Stability of Standing Waves for a Nonlinear Klein-Gordon Equation with Delta Potentials

@inproceedings{Csobo2018StabilityOS,
  title={Stability of Standing Waves for a Nonlinear Klein-Gordon Equation with Delta Potentials},
  author={Elek Csobo and Franccois Genoud and Masahito Ohta and Julien Royer},
  year={2018}
}
In this paper, we study local well-posedness and orbital stability of standing waves for a singularly perturbed one-dimensional nonlinear Klein–Gordon equation. We first establish local well-posedness of the Cauchy problem by a fixed point argument. Unlike the unperturbed case, a noteworthy difficulty here arises from the possible non-unitarity of the semigroup generating the corresponding linear evolution. We then show that the equation is Hamiltonian and we establish several stability… CONTINUE READING

References

Publications referenced by this paper.
SHOWING 1-10 OF 27 REFERENCES

Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation

C. A. Stuart
  • Milan J. Mathematics 76
  • 2008
VIEW 6 EXCERPTS
HIGHLY INFLUENTIAL

Instabilité forte d’ondes solitaires pour des équations de Klein–Gordon non linéaires et des équations généralisées de Boussinesq

Y. Liu, M. Ohta, G. Todorova
  • Ann. Inst. H. Poincaré Anal. Non Linéaire 24
  • 2007
VIEW 4 EXCERPTS
HIGHLY INFLUENTIAL

Similar Papers

Loading similar papers…