Stability of Special Instanton Bundles on P 2 " + 1

@inproceedings{Ancona2010StabilityOS,
  title={Stability of Special Instanton Bundles on P 2 " + 1},
  author={Vincenzo Ancona and Giorgio Ottaviani},
  year={2010}
}
We prove that the special instanton bundles of rank 2« on P2n+1(C) with a symplectic structure studied by Spindler and Trautmann are stable in the sense of Mumford-Takemoto. This implies that the generic special instanton bundle is stable. Moreover all instanton bundles on P5 are stable. We get also the stability of other related vector bundles. Introduction The instanton bundles of rank 2n on p2"+1 (C) were first defined by Okonek and Spindler in [OS], answering a question posed by Salamon in… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-10 of 16 references

The stability of certain vector bundles on V

G. Bohnhorst, H. Spindler
(Proc. Bayreuth Conference), • 1992

Rational normal curves and the geometry of special instanton bundles on P2"+1

H. Spindler, G. Trautmann
Math. Gottingensis • 1987

Special instanton bundles and Poncelet curves (Proc. Lambrecht Conf.)

W. Böhmer, G. Trautmann
Lecture Notes in Math., • 1987

Mathematical instanton bundles on p2n+1

C. Okonek, H. Spindler
J. Reine Angew. Math • 1986

Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles

S. K. Donaldson
Proc. London Math. Soc. (3) • 1985

Generischer spaltungstyp und zweite Chernklasse stabiler Vektorraumbündel vom rang 4 auf P4

H. J. Hoppe
Math. Z • 1984

Quaternionic structures and twistor spaces

S. M. Salamon
Global Riemannian Geometry (N. J. Willmore and T. J. Hitchin, eds.), Ellis Horwood, London • 1984
View 1 Excerpt

and A

W. Barth, C. Peters
Van de Ven, Compact complex surfaces, Springer-Verlag, Berlin, Heidelberg, and New York • 1984

Curvature and stability of vector bundles

S. Kobayashi
Proc. Japan Acad. Ser. A Math. Sei • 1982

Similar Papers

Loading similar papers…