Stability and holomorphic connections on vector bundles over LVMB manifolds
@article{Biswas2019StabilityAH, title={Stability and holomorphic connections on vector bundles over LVMB manifolds}, author={Indranil Biswas and Sorin Dumitrescu and Laurent Meersseman}, journal={arXiv: Differential Geometry}, year={2019} }
We characterize all LVMB manifolds X such that the holomorphic tangent bundle TX is spanned at the generic point by a family of global holomorphic vector fields, each of them having non-empty zero locus. We deduce that holomorphic connections on semi-stable holomorphic vector bundles over LVMB manifolds with this previous property are always flat.
References
SHOWING 1-10 OF 22 REFERENCES
Holomorphic Vector Bundles over Compact Complex Surfaces
- Mathematics
- 1996
Vector bundles over complex manifolds.- Facts on compact complex surfaces.- Line bundles over surfaces.- Existence of holomorphic vector bundles.- Classification of vector bundles.
Semistable Higgs Bundles Over Compact Gauduchon Manifolds
- Mathematics
- 2016
In this paper, we consider the existence of approximate Hermitian–Einstein structure and the semi-stability on Higgs bundles over compact Gauduchon manifolds. Using the continuity method, we show…
Real quadrics in Cn, complex manifolds and convex polytopes
- Mathematics
- 2006
In this paper, we investigate the topology of a class of non-Kähler compact complex manifolds generalizing that of Hopf and Calabi-Eckmann manifolds. These manifolds are diffeomorphic to special…
Complex analytic connections in fibre bundles
- Mathematics
- 1957
Introduction. In the theory of differentiable fibre bundles, with a Lie group as structure group, the notion of a connection plays an important role. In this paper we shall consider complex analytic…
Generalized holomorphic Cartan geometries
- MathematicsEuropean Journal of Mathematics
- 2019
This is largely a survey paper, dealing with Cartan geometries in the complex analytic category. We first remind some standard facts going back to the seminal works of Felix Klein, Élie Cartan and…
A new geometric construction of compact complex manifolds in any dimension
- Mathematics
- 2000
Abstract. We consider holomorphic linear foliations of dimension m of
$\mathbb C^n$ (with
$n>2m$) fulfilling a so-called weak hyperbolicity condition and equip the projectivization of the leaf…
The Kobayashi-Hitchin correspondence
- Mathematics
- 1995
Preparations basic material Hermitian-Einstein connections and metrics existence of Hermitian-Einstein metrics in stable bundles the Kobayashi-Hitchin correspondence applications examples.
Complex geometry of moment-angle manifolds
- Mathematics
- 2016
Moment-angle manifolds provide a wide class of examples of non-Kähler compact complex manifolds. A complex moment-angle manifold $$\mathcal {Z}$$Z is constructed via certain combinatorial data,…
Variétés complexes compactes : une généralisation de la construction de Meersseman et López de Medrano-Verjovsky
- Mathematics
- 2001
Nous construisons de nouvelles varietes complexes compactes comme espaces d'orbites d'actions lineaires de C n , generalisant en cela les constructions de Meersseman. Nous donnons egalement certaines…
Un procédé géométrique de construction de variétés compactes complexes, non algébriques, en dimension quelconque
- Mathematics
- 1998
Nous considerons des feuilletages holomorphes lineaires de c#n de dimension m (avec n>2m) satisfaisant a une condition dite d'hyperbolicite faible et munissons la projectivisation de l'espace des…