Stability and holomorphic connections on vector bundles over LVMB manifolds

@article{Biswas2019StabilityAH,
  title={Stability and holomorphic connections on vector bundles over LVMB manifolds},
  author={Indranil Biswas and Sorin Dumitrescu and Laurent Meersseman},
  journal={arXiv: Differential Geometry},
  year={2019}
}
We characterize all LVMB manifolds X such that the holomorphic tangent bundle TX is spanned at the generic point by a family of global holomorphic vector fields, each of them having non-empty zero locus. We deduce that holomorphic connections on semi-stable holomorphic vector bundles over LVMB manifolds with this previous property are always flat. 

References

SHOWING 1-10 OF 22 REFERENCES

Holomorphic Vector Bundles over Compact Complex Surfaces

Vector bundles over complex manifolds.- Facts on compact complex surfaces.- Line bundles over surfaces.- Existence of holomorphic vector bundles.- Classification of vector bundles.

Semistable Higgs Bundles Over Compact Gauduchon Manifolds

In this paper, we consider the existence of approximate Hermitian–Einstein structure and the semi-stability on Higgs bundles over compact Gauduchon manifolds. Using the continuity method, we show

Real quadrics in Cn, complex manifolds and convex polytopes

In this paper, we investigate the topology of a class of non-Kähler compact complex manifolds generalizing that of Hopf and Calabi-Eckmann manifolds. These manifolds are diffeomorphic to special

Complex analytic connections in fibre bundles

Introduction. In the theory of differentiable fibre bundles, with a Lie group as structure group, the notion of a connection plays an important role. In this paper we shall consider complex analytic

Generalized holomorphic Cartan geometries

This is largely a survey paper, dealing with Cartan geometries in the complex analytic category. We first remind some standard facts going back to the seminal works of Felix Klein, Élie Cartan and

A new geometric construction of compact complex manifolds in any dimension

Abstract. We consider holomorphic linear foliations of dimension m of $\mathbb C^n$ (with $n>2m$) fulfilling a so-called weak hyperbolicity condition and equip the projectivization of the leaf

The Kobayashi-Hitchin correspondence

Preparations basic material Hermitian-Einstein connections and metrics existence of Hermitian-Einstein metrics in stable bundles the Kobayashi-Hitchin correspondence applications examples.

Complex geometry of moment-angle manifolds

Moment-angle manifolds provide a wide class of examples of non-Kähler compact complex manifolds. A complex moment-angle manifold $$\mathcal {Z}$$Z is constructed via certain combinatorial data,

Variétés complexes compactes : une généralisation de la construction de Meersseman et López de Medrano-Verjovsky

Nous construisons de nouvelles varietes complexes compactes comme espaces d'orbites d'actions lineaires de C n , generalisant en cela les constructions de Meersseman. Nous donnons egalement certaines

Un procédé géométrique de construction de variétés compactes complexes, non algébriques, en dimension quelconque

Nous considerons des feuilletages holomorphes lineaires de c#n de dimension m (avec n>2m) satisfaisant a une condition dite d'hyperbolicite faible et munissons la projectivisation de l'espace des