Split metaplectic groups and their L-groups

@inproceedings{Weissman2011SplitMG,
  title={Split metaplectic groups and their L-groups},
  author={Martin H Weissman},
  year={2011}
}
We adapt the conjectural local Langlands parameterization to split metaplectic groups over local fields. When $\tilde G$ is a central extension of a split connected reductive group over a local field (arising from the framework of Brylinski and Deligne), we construct a dual group $\mathbf{\tilde G}^\vee$ and an L-group ${}^L \mathbf{\tilde G}^\vee$ as group schemes over ${\mathbb Z}$. Such a construction leads to a definition of Weil-Deligne parameters (Langlands parameters) with values in this… CONTINUE READING

References

Publications referenced by this paper.
SHOWING 1-10 OF 27 REFERENCES

Reine Angew

J Gordan Savin. On unramified representations of cov groups.
  • Math., 566:111–134,
  • 2004
VIEW 5 EXCERPTS
HIGHLY INFLUENTIAL

L-functions and applications: progress and prospects

Stephen S. Kudla, Stephen Rallis. On first occurrence in the local theta cor representations
  • volume 11 of Ohio State Univ. Math. Res. Inst. Publ., pages 273–308. de Gruyter, Berlin,
  • 2005
VIEW 2 EXCERPTS
HIGHLY INFLUENTIAL

Duke Math

Benedict H. Gross, Mark Reeder. Arithmetic invariants of discrete Langland parameters
  • J., 154(3):431–508,
  • 2010
VIEW 2 EXCERPTS

Pacific J

Martin H. Weissman. Metaplectic tori over local fields
  • Math., 241(1):169–200,
  • 2009
VIEW 2 EXCERPTS

Similar Papers

Loading similar papers…