Spiral waves in disinhibited mammalian neocortex.


Spiral waves are a basic feature of excitable systems. Although such waves have been observed in a variety of biological systems, they have not been observed in the mammalian cortex during neuronal activity. Here, we report stable rotating spiral waves in rat neocortical slices visualized by voltage-sensitive dye imaging. Tissue from the occipital cortex (visual) was sectioned parallel to cortical lamina to preserve horizontal connections in layers III-V (500-mum-thick, approximately 4 x 6 mm(2)). In such tangential slices, excitation waves propagated in two dimensions during cholinergic oscillations. Spiral waves occurred spontaneously and alternated with plane, ring, and irregular waves. The rotation rate of the spirals was approximately 10 turns per second, and the rotation was linked to the oscillations in a one-cycle- one-rotation manner. A small (<128 mum) phase singularity occurred at the center of the spirals, about which were observed oscillations of widely distributed phases. The phase singularity drifted slowly across the tissue ( approximately 1 mm/10 turns). We introduced a computational model of a cortical layer that predicted and replicated many of the features of our experimental findings. We speculate that rotating spiral waves may provide a spatial framework to organize cortical oscillations.

4 Figures and Tables

Citations per Year

296 Citations

Semantic Scholar estimates that this publication has 296 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Huang2004SpiralWI, title={Spiral waves in disinhibited mammalian neocortex.}, author={Xiaoying Huang and William C. Troy and Qian Yang and Hongtao Ma and Carlo R. Laing and Steven J. Schiff and Jian-young Wu}, journal={The Journal of neuroscience : the official journal of the Society for Neuroscience}, year={2004}, volume={24 44}, pages={9897-902} }