Spin Evolution and Cometary Interpretation of the Interstellar Minor Object 1I/2017 ’Oumuamua

@article{Rafikov2018SpinEA,
  title={Spin Evolution and Cometary Interpretation of the Interstellar Minor Object 1I/2017 ’Oumuamua},
  author={Roman R. Rafikov},
  journal={The Astrophysical Journal},
  year={2018}
}
  • R. Rafikov
  • Published 17 September 2018
  • Physics, Geology
  • The Astrophysical Journal
Observations of the first interstellar minor object 1I/2017 'Oumuamua did not reveal direct signs of outgassing that would have been natural if it had volatile-rich composition. However, a recent measurement by Micheli et al (2018) of a substantial non-gravitational acceleration affecting the orbit of this object has been interpreted as resulting from its cometary activity, which must be rather vigorous. Here we critically re-assess this interpretation by exploring the implications of measured… 

Figures from this paper

On the Spin Dynamics of Elongated Minor Bodies with Applications to a Possible Solar System Analogue Composition for ‘Oumuamua
The first interstellar object, 1I/2017 U1 (‘Oumuamua), exhibited several unique properties, including an extreme aspect ratio, a lack of typical cometary volatiles, and a deviation from a Keplerian
The natural history of ‘Oumuamua
4 The discovery of the first interstellar object (ISO) passing through the Solar System, 1I/2017 U1 5 (‘Oumuamua), provoked intense and continuing interest from the scientific community and the
Origin of 1I/’Oumuamua. II. An Ejected Exo-Oort Cloud Object?
1I/'Oumuamua is the first detected interstellar interloper. We test the hypothesis that it is representative of a background population of exo-Oort cloud objects ejected under the effect of post-main
Systematics and Consequences of Comet Nucleus Outgassing Torques
Anisotropic outgassing from comets exerts a torque sufficient to rapidly change the angular momentum of the nucleus, potentially leading to rotational instability. Here, we use empirical measures of
On the Anomalous Acceleration of 1I/2017 U1 ‘Oumuamua
We show that the P ~ 8 hr photometric period and the astrometrically measured A_(ng) ~ 2.5 × 10^(−4) cm s^(−2) non-gravitational acceleration (at r ~ 1.4 au) of the interstellar object 1I/2017
On the Possibility of an Artificial Origin for `Oumuamua
The first large interstellar object discovered near Earth by the Pan STARRS telescope, `Oumuamua, showed half a dozen anomalies relative to comets or asteroids in the Solar system. All natural-origin
High-drag Interstellar Objects and Galactic Dynamical Streams
  • T. Eubanks
  • Physics, Geology
    The Astrophysical Journal
  • 2019
The nature of 1I/'Oumuamua (henceforth, 1I), the first interstellar object known to pass through the solar system, remains mysterious. Feng \& Jones noted that the incoming 1I velocity vector "at
Anomalous Sun Flyby of 1I/2017 U1 (`Oumuamua)
The findings of Micheli et al. (Nature2018, 559, 223–226) that 1I/2017 U1 (`Oumuamua) showed anomalous orbital accelerations have motivated us to apply an impact model of gravity in search for an
Modelling the light curve of ‘Oumuamua: evidence for torque and disc-like shape
  • S. Mashchenko
  • Physics, Geology
    Monthly Notices of the Royal Astronomical Society
  • 2019
We present the first attempt to fit the light curve of the interstellar visitor ‘Oumuamua using a physical model that includes optional torque. We consider both conventional (Lommel–Seeliger
Comet C/2018 V1 (Machholz–Fujikawa–Iwamoto): dislodged from the Oort Cloud or coming from interstellar space?
The chance discovery of the first interstellar minor body, 1I/2017 U1 (‘Oumuamua), indicates that we may have been visited by such objects in the past and that these events may repeat in the
...
1
2
3
...

References

SHOWING 1-10 OF 37 REFERENCES
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua
During the formation and evolution of the Solar System, significant numbers of cometary and asteroidal bodies were ejected into interstellar space1,2. It is reasonable to expect that the same
Tumbling motion of 1I/‘Oumuamua and its implications for the body’s distant past
Models of the Solar System’s evolution show that almost all the primitive material leftover from the formation of the planets was ejected to the interstellar space as a result of dynamical
Implications for planetary system formation from interstellar object 1I/2017 U1 (`Oumuamua)
The recently discovered minor body 1I/2017 U1 (`Oumuamua) is the first known object in our Solar System that is not bound by the Sun's gravity. Its hyperbolic orbit (eccentricity greater than unity)
1I/2017 ’Oumuamua-like Interstellar Asteroids as Possible Messengers from Dead Stars
  • R. Rafikov
  • Physics, Geology
    The Astrophysical Journal
  • 2018
Discovery of the first interstellar asteroid (ISA) - 1I/2017 'Oumuamua - raised a number of questions regarding its origin. Many of them relate to its lack of cometary activity, suggesting refractory
Col-OSSOS: Colors of the Interstellar Planetesimal 1I/‘Oumuamua
The recent discovery by Pan-STARRS1 of 1I/2017 U1 (`Oumuamua), on an unbound and hyperbolic orbit, offers a rare opportunity to explore the planetary formation processes of other stars, and the
1I/‘Oumuamua as a Tidal Disruption Fragment from a Binary Star System
1I/'Oumuamua is the first known interstellar small body, probably being only about 100 m in size. Against expectations based on comets, 'Oumuamua does not show any activity and has a very elongated
A brief visit from a red and extremely elongated interstellar asteroid
TLDR
Observations and analysis of the object 1I/2017 U1 (‘Oumuamua) that demonstrate its extrasolar trajectory, and that enable comparisons to be made between material from another planetary system and from the authors' own, reveal it to be asteroidal with no hint of cometary activity despite an approach within 0.25 astronomical units of the Sun.
APO Time Resolved Color Photometry of Highly-Elongated Interstellar Object 1I/'Oumuamua
We report on $g$, $r$ and $i$ band observations of the Interstellar Object 'Oumuamua (1I) taken on 2017 October 29 from 04:28 to 08:40 UTC by the Apache Point Observatory (APO) 3.5m telescope's
Constraints on the Density and Internal Strength of 1I/'Oumuamua
1I/'Oumuamua was discovered by the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS 1) on 19 October 2017. Unlike all previously discovered minor planets this object was determined to
1I/'Oumuamua is tumbling
The discovery of 1I/2017 U1 ('Oumuamua) has provided the first glimpse of a planetesimal born in another planetary system. This interloper exhibits a variable colour, within a range that is broadly
...
1
2
3
4
...