Spectral representation and dispersion relations in field theory on noncommutative space

@article{Liao2002SpectralRA,
  title={Spectral representation and dispersion relations in field theory on noncommutative space},
  author={Yi Liao and Klaus Sibold},
  journal={Physics Letters B},
  year={2002},
  volume={549},
  pages={352-361}
}

Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space

We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In

Noncommutative (supersymmetric) electrodynamics in the Yang-Feldman formalism

We study quantum electrodynamics on the noncommutative Minkowski space (NCQED) in the Yang-Feldman formalism. Local observables are defined by using covariant coordinates. We compute the two-point

Locality, Causality and

We analyse the causality condition in noncommutative field theory and show that the nonlocality of noncommutative interaction leads to a modification of the light cone to the light wedge. This effect

Phase diagram and dispersion relation of the non-commutative ?phi4 model in d = 3

We present a non-perturbative study of the ?4 model in a three dimensional euclidean space, where the two spatial coordinates are non-commutative. Our results are obtained from numerical simulations

Locality, Causality and Noncommutative Geometry

We analyse the causality condition in noncommutative field theory and show that the nonlocality of noncommutative interaction leads to a modification of the light cone to the light wedge. This effect

Some phenomenological consequences of the time-ordered perturbation theory of QED on non-commutative spacetime

Abstract. A framework was recently proposed for doing perturbation theory on non-commutative (NC) spacetime. It preserves the unitarity of the S matrix and differs from the naive, popular approach

Noncommutative deformations of quantum field theories, locality, and causality

We investigate noncommutative deformations of quantum field theories for different star products, particularly emphasizing the locality properties and the regularity of the deformed fields. Using

On the failure of microcausality in noncommutative field theories

We revisit the question of microcausality violations in quantum field theory on noncommutative spacetime, taking $O(x)=:\phi\star\phi:(x)$ as a sample observable. Using methods of the theory of

References

SHOWING 1-10 OF 31 REFERENCES

Time-ordered perturbation theory on non-commutative spacetime: Basic rules

Abstract. Assuming that the S-matrix on non-commutative (NC) spacetime can still be developed perturbatively in terms of the time-ordered exponential of the interaction Lagrangian, we investigate the

Space/time non-commutativity and causality

Field theories based on non-commutative spacetimes exhibit very distinctive non-local effects which mix the ultraviolet with the infrared in bizarre ways. In particular if the time coordinate is

The IR/UV connection in the non-commutative gauge theories

Quantum field theory on non-commutative spaces does not enjoy the usual ultraviolet-infrared decoupling that forms the basis for conventional renormalization. The high momentum contributions to loop

Comments on noncommutative perturbative dynamics

We analyze further the IR singularities that appear in noncommutative field theories on d. We argue that all IR singularities in nonplanar one loop diagrams may be interpreted as arising from the

Dispersion relations for the self-energy in noncommutative field theories

We study the IR/UV connection in non-commutative $\phi^{3}$ theory as well as in non-commutative QED from the point of view of the dispersion relation for the self-energy. We show that, although the

Noncommutative perturbative dynamics

We study the perturbative dynamics of noncommutative field theories on R d , and find an intriguing mixing of the UV and the IR. High energies of virtual particles in loops produce non-analyticity at

Maximally localized states and causality in noncommutative quantum theories

We give simple representations for quantum theories in which the position commutators are nonvanishing constants. A particular representation reproduces results found using the Moyal star product.

Spin-statistics and CPT theorems in noncommutative field theory