Spectral properties of a short-range impurity in a quantum dot

@inproceedings{Brning2008SpectralPO,
  title={Spectral properties of a short-range impurity in a quantum dot},
  author={Jochen Br{\"u}ning and V. Geyler and I. S. Lobanov},
  year={2008}
}
The spectral properties of the quantum mechanical system consisting of a quantum dot with a short-range attractive impurity inside the dot are investigated in the zero-range limit. The Green function of the system is obtained in an explicit form. In the case of a spherically symmetric quantum dot, the dependence of the spectrum on the impurity position and the strength of the impurity potential is analyzed in detail. It is proven that the confinement potential of the dot can be recovered from… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-10 of 43 references

On the theory of photoionization of deep - level impurity centers in a parabolic quantum well

  • V. D. Krevchik, R. V. Zaitsev, V. V. Evstifeev
  • Physica E
  • 2003

Tuneling spectroscopy of a quantum dot through a single impurity,

  • 7E. Lind, B. Gustafson, I. Pitzonk, L.-E. Wernersson
  • Phys. Rev. B
  • 2003

Anisotropy of the magneto-optical absorption of quantum dot - impurity center complex,

  • 15V.D. Krevchik, A. B. Grunin, R. V. Zaitsev
  • Semiconductors 36,
  • 2002

Impurity absorption of light in structures with quantum dots,

  • 14V.D. Krevchik, R. V. Zaitsev
  • Phys. Solid States
  • 2001

Quantum wells, wires and dots (J

  • 2P. Harrison
  • Fiz. Tekh. Poluprovodn
  • 2000

Effect of a parabolic potential on the impurity binding energy in spherical quantum dots,

  • 11C. Bose, C. K. Sarkar
  • Physica B 253,
  • 1998

Handbook of Feynman path integrals (Springer-Verlag

  • 18C. Grosche, F. Steiner
  • Berlin etc.,
  • 1998

Harmonic oscillator Green functions,

  • 19D.B. Khrebtukov, J. H. Macek
  • J. Phys. A: Math. Gen
  • 1998

Impurity states in a narrow band gap semiconductor quantum dot with parabolic confinement potential

  • E. M. Kazaryan, L. S. Petrosyan, H. A. Sarkisyan
  • Physica B
  • 1998

Schrödinger operators with moving point perturbations and related solvable models of quantum mechanical systems,

  • 27V.A. Geyler, I. V. Chudaev
  • Z. für Analysis und Anwend. (J. for Analisis and…
  • 1998

Similar Papers

Loading similar papers…