# Spectral invariants for monotone Lagrangians

@article{Leclercq2018SpectralIF, title={Spectral invariants for monotone Lagrangians}, author={R'emi Leclercq and Frol Zapolsky}, journal={Journal of Topology and Analysis}, year={2018} }

Since spectral invariants were introduced in cotangent bundles via generating functions by Viterbo in the seminal paper [73], they have been defined in various contexts, mainly via Floer homology theories, and then used in a great variety of applications. In this paper we extend their definition to monotone Lagrangians, which is so far the most general case for which a “classical” Floer theory has been developed. Then, we gather and prove the properties satisfied by these invariants, and which…

## 33 Citations

### Bounds on spectral norms and barcodes

- MathematicsGeometry & Topology
- 2021

We investigate the relations between algebraic structures, spectral invariants, and persistence modules, in the context of monotone Lagrangian Floer homology with Hamiltonian term. Firstly, we use…

### Quantitative Heegaard Floer cohomology and the Calabi invariant

- Mathematics
- 2021

We define a new family of spectral invariants associated to certain Lagrangian links in compact and connected surfaces of any genus. We show that our invariants recover the Calabi invariant of…

### Function theoretical applications of Lagrangian spectral invariants

- Mathematics
- 2018

Entov and Polterovich considered the concept of heaviness and superheaviness by the Oh-Schwarz spectral invariants. The Oh-Schwarz spectral invariants are defined in terms of the Hamiltonian Floer…

### The spectral diameter of a Liouville domain

- Mathematics
- 2022

The group of compactly supported Hamiltonian diﬀeomorphisms of a symplectic manifold is endowed with a natural bi-invariant distance, due to Viterbo, Schwarz, Oh, Frauenfelder and Schlenk, coming…

### Symplectic cohomology and a conjecture of Viterbo

- MathematicsGeometric and Functional Analysis
- 2022

We identify a new class of closed smooth manifolds for which there exists a uniform bound on the Lagrangian spectral norm of Hamiltonian deformations of the zero section in a unit cotangent disk…

### Invariants of Lagrangian cobordisms via spectral numbers

- MathematicsJournal of Topology and Analysis
- 2019

We extend parts of the Lagrangian spectral invariants package recently developed by Leclercq and Zapolsky to the theory of Lagrangian cobordism developed by Biran and Cornea. This yields a…

### Lagrangian configurations and Hamiltonian maps

- Mathematics
- 2021

. We study conﬁgurations of disjoint Lagrangian submanifolds in certain low-dimensional symplectic manifolds from the perspective of the geometry of Hamiltonian maps. We detect inﬁnite-dimensional…

### Noncontractible Hamiltonian loops in the kernel of Seidel’s representation

- Mathematics
- 2017

The main purpose of this note is to exhibit a Hamiltonian diffeomorphism loop undetected by the Seidel morphism of certain 2-point blow-ups of $S^2 \times S^2$, exactly one of which being monotone.…

### Bounds on the Lagrangian spectral metric in cotangent bundles

- MathematicsCommentarii Mathematici Helvetici
- 2022

Let $N$ be a closed manifold and $U \subset T^*(N)$ a bounded domain in the cotangent bundle of $N$, containing the zero-section. A conjecture due to Viterbo asserts that the spectral metric for…

### A Note on Partial Quasi-Morphisms and Products in Lagrangian Floer Homology in Cotangent Bundles

- MathematicsMediterranean Journal of Mathematics
- 2022

We define partial quasi-morphisms on the group of Hamiltonian diffeomorphisms of the cotangent bundle using the spectral invariants in Lagrangian Floer homology with conormal boundary conditions,…

## References

SHOWING 1-10 OF 102 REFERENCES

### On the Hofer geometry for weakly exact Lagrangian submanifolds

- Mathematics
- 2013

We use spectral invariants in Lagrangian Floer theory in order to show that there exist isometric embeddings of normed linear spaces (finite or infinite-dimensional, depending on the case) into the…

### New energy-capacity-type inequalities and uniqueness of continuous Hamiltonians

- Mathematics
- 2012

We prove a new variant of the energy-capacity inequality for closed rational symplectic manifolds (as well as certain open manifolds such as cotangent bundle of closed manifolds...) and we derive…

### Symplectic quasi-states on the quadric surface and Lagrangian submanifolds

- Mathematics
- 2010

The quantum homology of the monotone complex quadric surface splits into the sum of two fields. We outline a proof of the following statement: The unities of these fields give rise to distinct…

### Rigid subsets of symplectic manifolds

- MathematicsCompositio Mathematica
- 2009

Abstract We show that there is an hierarchy of intersection rigidity properties of sets in a closed symplectic manifold: some sets cannot be displaced by symplectomorphisms from more sets than the…

### On the extrinsic topology of Lagrangian submanifolds

- Mathematics
- 2005

We investigate the extrinsic topology of Lagrangian submanifolds and of their submanifolds in closed symplectic manifolds using Floer homological methods. The first result asserts that the homology…

### On exotic monotone Lagrangian tori in CP 2 and S 2 × S 2

- Mathematics
- 2013

Because of Darboux’s theorem and because any open subset of Cn contains a Lagrangian torus, it is possible to construct a Lagrangian torus in any symplectic manifold. The construction of Lagrangian…

### Spectral Invariants with Bulk, Quasi-Morphisms and Lagrangian Floer Theory

- MathematicsMemoirs of the American Mathematical Society
- 2019

In this paper we first develop various enhancements of the theory of spectral invariants of Hamiltonian Floer homology and of Entovi-Polterovich theory of spectral symplectic quasi-states and…

### Spectral invariants, analysis of the Floer moduli spaces and geometry of the Hamiltonian diffeomorphism group

- Mathematics
- 2004

In this paper, we apply spectral invariants, constructed in [Oh5,8], to the study of Hamiltonian diffeomorphisms of closed symplectic manifolds $(M,\omega)$. Using spectral invariants, we first…

### A comparison of symplectic homogenization and Calabi quasi-states

- Mathematics
- 2010

We compare two functionals defined on the space of continuous functions with compact support in an open neighborhood of the zero section of the cotangent bundle of a torus. One comes from Viterbo's…

### Floer homology and Novikov rings

- Mathematics
- 1995

We prove the Arnold conjecture for compact symplectic manifolds under the assumption that either the first Chern class of the tangent bundle vanishes over π2(M) or the minimal Chern number is at…