Spectral Functions for Real Symmetric Toeplitz Matricesa

@inproceedings{Melman1998SpectralFF,
  title={Spectral Functions for Real Symmetric Toeplitz Matricesa},
  author={. Melman},
  year={1998}
}
  • . Melman
  • Published 1998
We derive separate spectral functions for the even and odd spectra of a real symmetric Toeplitz matrix, which are given by the roots of those functions. These are rational functions, also commonly referred to as secular functions. Two applications are considered: spectral evolution as a function of one parameter and the computation of eigenvalues. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 23 references

A parallel divide and conquer algorithm forthe generalized real symmetric de nite tridiagonal eigenproblem

  • C. F. Borges, W. B. Gragg
  • 1993

Spectral evolution of a one - parameter extension of a real symmetric Toeplitz matrix

  • W. F. Trench
  • SIAM J . Matrix Anal . Appl .
  • 1990

A constrained eigenvalue problem

  • W. Gander, G. H. Golub, U. von Matt
  • Linear Algebra Appl .
  • 1989

Numerical experience with a superfastToeplitz solver

  • M. Pindor, W. Siemaszko, G. S. Ammar, W. B. Gragg
  • Linear Algebra Appl .
  • 1989

Numerical solution of the eigenvalue problem for HermitianToeplitz matrices

  • W. F. Trench
  • SIAM J . Matrix Anal . Appl .
  • 1989

A new algorithm for solving Toeplitz systems of equations

  • F. De Hoog
  • LinearAlgebra Appl .
  • 1987

Similar Papers

Loading similar papers…