# Spectral Flow, Maslov Index and Bifurcation of Semi-Riemannian Geodesics

@article{Piccione2002SpectralFM, title={Spectral Flow, Maslov Index and Bifurcation of Semi-Riemannian Geodesics}, author={Paolo Piccione and Alessandro Portaluri and Daniel V. Tausk}, journal={Annals of Global Analysis and Geometry}, year={2002}, volume={25}, pages={121-149} }

We give a functional analytical proof of the equalitybetween the Maslov index of a semi-Riemannian geodesicand the spectral flow of the path of self-adjointFredholm operators obtained from the index form. This fact, together with recent results on the bifurcation for critical points of strongly indefinite functionals imply that each nondegenerate and nonnull conjugate (or P-focal)point along a semi-Riemannian geodesic is a bifurcation point.In particular, the semi-Riemannian exponential map is…

## 43 Citations

A Morse Index Theorem and bifurcation for perturbed geodesics on Semi-Riemannian Manifolds

- Mathematics
- 2003

Perturbed geodesics are trajectories of particles moving on a semi-Riemannian manifold in the presence of a potential. Our purpose here is to extend to perturbed geodesics on semi-Riemannian…

A Morse index theorem for perturbed geodesics on semi-Riemannian manifolds

- Mathematics
- 2005

Perturbed geodesics are trajectories of particles moving on
a semi-Riemannian manifold in the presence of a potential. Our
purpose here is to extend to perturbed geodesics on
semi-Riemannian…

Instability of semi-Riemannian closed geodesics

- MathematicsNonlinearity
- 2019

A celebrated result due to Poincare affirms that a closed non-degenerate minimizing geodesic $\gamma$ on an oriented Riemannian surface is hyperbolic. Starting from this classical theorem, our first…

Linear instability for periodic orbits of non-autonomous Lagrangian systems

- Mathematics
- 2019

Inspired by the classical Poincaré criterion about the instability of orientation preserving minimizing closed geodesics on surfaces, we investigate the relation intertwining the instability and the…

Maslov index in semi-Riemannian submersions

- Mathematics
- 2010

We study focal points and Maslov index of a horizontal geodesic γ : I → M in the total space of a semi-Riemannian submersion π : M → B by determining an explicit relation with the corresponding…

MORSE INDEX AND BIFURCATION OF p-GEODESICS ON SEMI RIEMANNIAN MANIFOLDS

- Mathematics
- 2007

Given a one-parameter family {gλ : λ ∈ (a, b)} of semi Riemannian metrics on an n- dimensional manifold M , a family of time-dependent potentials {Vλ : λ ∈ (a, b)} and a family {σλ : λ ∈ (a, b)} of…

On the Maslov index of symplectic paths that are not transversal to the Maslov cycle. Semi-Riemannian index theorems in the degenerate case

- Mathematics
- 2003

We use the notion of generalized signatures at a singularity of a smooth curve of symmetric bilinear forms to determine a formula for the computation of the Maslov index in the case of a…

## References

SHOWING 1-10 OF 23 REFERENCES

Stability of the conjugate index, degenerate conjugate points and the Maslov index in semi-Riemannian geometry

- Mathematics
- 2002

We investigate the problem of the stability of the number of conjugate or focal points (counted with multiplicity) along a semi-Riemannian geodesic γ. For a Riemannian or a non-spacelike Lorentzian…

The Maslov index and a generalized Morse index theorem for non-positive definite metrics

- Mathematics
- 2000

Spectral Flow and Bifurcation of Critical Points of Strongly-Indefinite Functionals Part I. General Theory☆

- Mathematics
- 1999

Abstract Spectral flow is a well-known homotopy invariant of paths of selfadjoint Fredholm operators. We describe here a new construction of this invariant and prove the following…

Spectral asymmetry and Riemannian geometry. II

- Mathematics
- 2007

In Part I of this paper (6) we proved various index theorems for manifolds with boundary including an extension of the Hirzebruch signature theorem. We now propose to investigate the geometric and…

On the Distribution of Conjugate Points along semi-Riemannian Geodesics

- Mathematics
- 2000

Helfer in [Pacific J. Math. 164/2 (1994), p. 321--350] was the first to produce an example of a spacelike Lorentzian geodesic with a continuum of conjugate points. In this paper we show the following…

Self-adjoint Fredholm operators and spectral flow

- Mathematics
- 1996

Abstract We study the topology of the nontrivial component, , of self-adjoint Fredholm operators on a separable Hilbert space. In particular, if {Bt } is a path of such operators, we can associate to…

THE CONJUGATE LOCUS OF A RIEMANNIAN MANIFOLD.

- Mathematics
- 1965

Introduction. The conjugate locus (considered as a subset of the tangeit space to a point of a Rliemannian mauiifold) splits naturally into two subsetsthe regular locus and the singular locus; the…

Riemannian Geometry

- MathematicsNature
- 1927

THE recent physical interpretation of intrinsic differential geometry of spaces has stimulated the study of this subject. Riemann proposed the generalisation, to spaces of any order, of Gauss's…