Specific adeno-associated virus serotypes facilitate efficient gene transfer into human and non-human primate mesenchymal stromal cells.

Abstract

Mesenchymal stromal cells (MSCs) show great promise for ex vivo gene and cell-mediated therapies. The immunophenotype and in vitro differentiation capacity of primary baboon MSCs was demonstrated to be near-identical to that observed in human MSCs. To optimize gene transfer efficiency, we compared the efficiency of serotypes 1, 2, 3, 4, 5, 6, and 8 of adeno-associated virus (AAV) vectors for their ability to mediate transduction of human and baboon MSCs. AAV serotype 2 vectors were the most efficient in transducing MSCs from humans and baboons. As a reference, human Ad293 cells were transduced with these seven AAV serotypes, and were found to have the highest transduction levels followed by baboon MSCs, and then human MSCs. The order of increasing transduction efficiency for the serotypes tested was similar for human and baboon MSCs, but was different for human Ad293 cells. The transduction efficiency of MSCs isolated from different individuals was comparable within the same species. We also demonstrated that baboon MSCs transduced with AAV serotype 2 vectors retain their potential to differentiate into adipocytes in vitro, and can incorporate into injured muscle tissue of NODSCID mice in vivo. We detected beta-galactosidase reporter gene expression in host muscle tissue for up to 9 weeks in this study, indicating engraftment of transduced baboon MSCs and sustained transgene expression in vivo.

Statistics

050100150200920102011201220132014201520162017
Citations per Year

104 Citations

Semantic Scholar estimates that this publication has 104 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Chng2007SpecificAV, title={Specific adeno-associated virus serotypes facilitate efficient gene transfer into human and non-human primate mesenchymal stromal cells.}, author={Keefe Chng and Stephen R. Larsen and Shangzhen Zhou and John Fraser Wright and Rosetta Martiniello-Wilks and John Edward Joshua Rasko}, journal={The journal of gene medicine}, year={2007}, volume={9 1}, pages={22-32} }