Species Over a Finite Field

@inproceedings{Henderson2005SpeciesOA,
  title={Species Over a Finite Field},
  author={Anthony Henderson},
  year={2005}
}
We generalize Joyal’s theory of species to the case of functors from the groupoid of finite sets to the category of varieties over Fq . These have cycle index series defined by counting fixed points of twisted Frobenius maps. We give an application to configuration spaces. 

From This Paper

Topics from this paper.

Citations

Publications citing this paper.
Showing 1-3 of 3 extracted citations

References

Publications referenced by this paper.
Showing 1-7 of 7 references

A compactification of configuration spaces,

W. Fulton, R. Macpherson
Ann. of Math • 1994
View 3 Excerpts
Highly Influenced

Equivariant Poincaré polynomials and counting points over finite fields,

M. Kisin, G. I. Lehrer
J. Algebra • 2002

Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, vol. 47 of American Mathematical Society Colloquium Publications

Y. I. Manin
American Mathematical Society, • 1999

Combinatorial Species and Tree-like Structures, vol. 67 of Encyclopedia of Mathematics and its Applications

F. Bergeron, G. Labelle, P. Leroux
1998
View 2 Excerpts

Foncteurs analytiques et espèces de structures,

A. Joyal
Combinatoire Énumérative (Quebec, • 1985
View 2 Excerpts

Une théorie combinatoire des séries formelles,

A. Joyal
Adv. Math • 1981
View 2 Excerpts

Similar Papers

Loading similar papers…