Specializations of Generalized Laguerre Polynomials

@inproceedings{Simion1994SpecializationsOG,
  title={Specializations of Generalized Laguerre Polynomials},
  author={Rodica Simion and Dennis Stanton},
  year={1994}
}
Three specializations of a set of orthogonal polynomials with “8 different q’s” are given. The polynomials are identified as q-analogues of Laguerre polynomials, and the combinatorial interpretation of the moments give infinitely many new Mahonian statistics on permutations. 

From This Paper

Topics from this paper.
13 Citations
7 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-7 of 7 references

Une théorie combinatoire des polynômes orthogonaux généraux

  • G. Viennot
  • Lecture Notes, UQAM
  • 1983
Highly Influential
4 Excerpts

A combinatorial theory for general orthogonal polynomials with extensions and applications, in Polynômes

  • G. Viennot
  • Orthogonaux et Applications, Bar-leDuc,
  • 1984

Combinatorics of Laguerre polynomials, in Enumeration and Design, Waterloo Jubilee Conference

  • F-S D. Foata, V. Strehl
  • 1984

The q-analogue of the Laguerre polynomials

  • D. Moak
  • J. Math. Anal. Appl
  • 1981

An Introduction to Orthogonal Polynomials

  • T. Chihara
  • Mathematics and its applications, v. 13, Gordon…
  • 1978

Higher Transcendental Functions

  • A. Erdélyi
  • McGraw-Hill, New York
  • 1953
1 Excerpt

Similar Papers

Loading similar papers…