Sparsification-a technique for speeding up dynamic graph algorithms
@article{Eppstein1992SparsificationaTF, title={Sparsification-a technique for speeding up dynamic graph algorithms}, author={David Eppstein and Zvi Galil and Giuseppe F. Italiano and Amnon Nissenzweig}, journal={Proceedings., 33rd Annual Symposium on Foundations of Computer Science}, year={1992}, pages={60-69} }
The authors provide data structures that maintain a graph as edges are inserted and deleted, and keep track of the following properties: minimum spanning forests, best swap, graph connectivity, and graph 2-edge-connectivity, in time O(n/sup 1/2/log(m/n)) per change; 3-edge-connectivity, in time O(n/sup 2/3/) per change; 4-edge-connectivity, in time O(n alpha (n)) per change; k-edge-connectivity, in time O(n log n) per change; bipartiteness, 2-vertex-connectivity, and 3-vertex-connectivity, in…
248 Citations
Maintaining dynamic graph properties deterministically
- Computer Science
- 2001
The algorithms match the previous best randomized bounds, and improve substantially over the best deterministic bounds, for maintaining several properties on undirected graphs subject to edge insertions and deletions in polylogarithmic time per operation.
Ambivalent Data Structures for Dynamic 2-Edge-Connectivity and k Smallest Spanning Trees
- Computer ScienceSIAM J. Comput.
- 1997
Ambivalent data structures are presented for several problems on undirected graphs and used in finding the k smallest spanning trees of a weighted undirecting graph in O(m log beta (m,n)+min(k/sup 3/2/, km/sup 1/2/)) time, where m and n are understood to be the current number of edges and vertices, respectively.
Fully dynamic maintaining 2-edge connectivity in parallel
- Computer Science, MathematicsProceedings.Seventh IEEE Symposium on Parallel and Distributed Processing
- 1995
The proposed algorithm is the first NC algorithm for this problem using sublinear number processors o(m), which shows that all operations such as inserting an edge to or deleting an edge from the graph can be completed in O(log m) time with O(m/sup 3/4/) processors.
Optimal Decremental Connectivity in Non-Sparse Graphs
- Computer ScienceArXiv
- 2021
A dynamic algorithm for maintaining the connected and 2-edge-connected components in an undirected graph subject to edge deletions that is Monte-Carlo randomized and can answer queries to whether any two given vertices currently belong to the same (2-edge-)connected component in constant time.
Separator based sparsification for dynamic planar graph algorithms
- Computer ScienceSTOC '93
- 1993
A fully dynamic planarity testing algorithm is given that maintains a graph subject to edge insertions and deletions, and allows queries that test whether the graph is currently planar, or whether a potential new edge would violate planarity, in amortized time O(nl 12) per update or query.
Fully dynamic biconnectivity in graphs
- Computer ScienceProceedings., 33rd Annual Symposium on Foundations of Computer Science
- 1992
The author presents an algorithm for maintaining the bi-connected components of a graph during a sequence of edge insertions and deletions, which is the first sublinear algorithm for this problem.
Dynamic 2- and 3-Connectivity on Planar Graphs (Preliminary Version)
- Computer ScienceSWAT
- 1992
This work studies the problem of maintaining the 2-edge, 2-vertex, and 3-edge-connected components of a dynamic planar graph subject to edge deletions and finds that they can be maintained in a total of O(log n) time.
Maintaining the 4-edge-connected components of a graph on-line
- Computer Science, Mathematics[1993] The 2nd Israel Symposium on Theory and Computing Systems
- 1993
The author suggests graph structures and an incremental algorithm to maintain k- edge-connected components for the case k=4 and an algorithm for maintaining k-edge- connected components (k arbitrary) in a (k-1)-edge-connected graph.
Improved data structures for fully dynamic biconnectivity
- Computer Science, MathematicsSTOC
- 1994
The authors' algorithm for general graphs can also find the biconnected components of all vertices in time O(n) and improves the later running times to $O(\sqrt {m\log n})$ in general graphs and O(log 2 n) in plane graphs.
Faster Deterministic Fully-Dynamic Graph Connectivity
- Encyclopedia of Algorithms
- 2016
References
SHOWING 1-10 OF 22 REFERENCES
Fully dynamic algorithms for edge connectivity problems
- Mathematics, Computer ScienceSTOC '91
- 1991
Algorithms to test at any time whether two vertices belong to the same 2-edge-connected component of a connected graph, and how to insert and delete an edge in 0(m213) time in the worst case, where m is the current number of edges in the graph.
Fully dynamic biconnectivity in graphs
- Computer ScienceProceedings., 33rd Annual Symposium on Foundations of Computer Science
- 1992
The author presents an algorithm for maintaining the bi-connected components of a graph during a sequence of edge insertions and deletions, which is the first sublinear algorithm for this problem.
A matroid approach to finding edge connectivity and packing arborescences
- Computer Science, MathematicsSTOC '91
- 1991
An algorithm that finds k edge-disjoint arborescences on a directed graph in time O(kmn + k3n2)2 is presented, based on two theorems of Edmonds that link these two problems and show how they can be solved.
On-line maintenance of the four-connected components of a graph
- Mathematics, Computer Science[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science
- 1991
The authors present a static data structure that answers k-connectivity queries for k<or=4 that supports queries and updates in time O( alpha (l,n)) amortized, and an efficient algorithm for testing whether graph G is four-connected that runs in O(n alpha (n, n)+m) time using O( n+m) space.
Efficient algorithms for finding minimum spanning trees in undirected and directed graphs
- Computer ScienceComb.
- 1986
This paper uses F-heaps to obtain fast algorithms for finding minimum spanning trees in undirected and directed graphs and can be extended to allow a degree constraint at one vertex.
Maintenance of a minimum spanning forest in a dynamic planar graph
- Computer ScienceSODA '90
- 1990
Efficient Algorithms for Graphic Matroid Intersection and Parity (Extended Abstract)
- Computer ScienceICALP
- 1985
Improved algorithms for other problems are obtained, including maintaining a minimum spanning tree on a planar graph subject to changing edge costs, and finding shortest pairs of disjoint paths in a network.
Algorithms for parallel k-vertex connectivity and sparse certificates
- Computer Science, MathematicsSTOC '91
- 1991
It is shown that sparse certificates for undirected graphs can be computed by executing k breadth first searches in sequence, and sequential algorithms for finding (undirected) sparse certificates ‘(on-line”, and for finding - are given.
Maintenance of Triconnected Components of Graphs (Extended Abstract)
- Computer ScienceICALP
- 1992
In this paper, optimal algorithms and data structures are presented to maintain the triconnected components of a general graph, under insertions of edges in the graph. At any moment, the data…
Finding thek smallest spanning trees
- Computer Science, Mathematics
- 1992
It is shown that the best spanning trees for a set of points in the plane can be computed in timeO(min(k2n+n logn,k2+kn log log(n/k))).