• Corpus ID: 239998078

Spaces of unbounded Fredholm operators. I. Homotopy equivalences

@inproceedings{Prokhorova2021SpacesOU,
  title={Spaces of unbounded Fredholm operators. I. Homotopy equivalences},
  author={Marina Prokhorova},
  year={2021}
}
This paper is devoted to the spaces of unbounded Fredholm operators and operators with compact resolvent in a Hilbert space. In 2003 Joachim proved, using Kasparov KK-theory, that these spaces equipped with the graph topology represent even K-theory, while their subspaces consisting of self-adjoint operators represent odd K-theory. We give a simple topological proof of Joachim’s results. We also show that all the natural maps between these spaces and other classical spaces of operators are… 
1 Citations

From graph to Riesz continuity

We show that every graph continuous family of unbounded operators in a Hilbert space becomes Riesz continuous after multiplication by an appropriate family of unitaries. This result leads to two

References

SHOWING 1-10 OF 20 REFERENCES

The uniqueness of the spectral flow on spaces of unbounded self--adjoint Fredholm operators

We discuss several natural metrics on spaces of unbounded self--adjoint operators and their relations, among them the Riesz and the graph metric. We show that the topologies of the spaces of Fredholm

Self-Adjoint Local Boundary Problems on Compact Surfaces. I. Spectral Flow

The paper deals with first order self-adjoint elliptic differential operators on a smooth compact oriented surface with non-empty boundary. We consider such operators with self-adjoint local boundary

Index theory for skew-adjoint fredholm operators

© Publications mathématiques de l’I.H.É.S., 1969, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://

Partitions of unity in homotopy theory

© Foundation Compositio Mathematica, 1971, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions

Champs continus d’espaces hilbertiens et de $C^\ast $ -algèbres

© Bulletin de la S. M. F., 1963, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html) implique l’accord