• Corpus ID: 88517491

Space-time covariance functions with compact support

@article{Zastavnyi2009SpacetimeCF,
  title={Space-time covariance functions with compact support},
  author={Viktor Zastavnyi and Emilio Porcu},
  journal={arXiv: Methodology},
  year={2009}
}
We characterize completely the Gneiting class of space-time covariance functions and give more relaxed conditions on the involved functions. We then show necessary conditions for the construction of compactly supported functions of the Gneiting type. These conditions are very general since they do not depend on the Euclidean norm. Finally, we discuss a general class of positive definite functions, used for multivariate Gaussian random fields. For this class, we show necessary criteria for its… 
On the asymptotic joint distribution of sample space--time covariance estimators
We study the asymptotic joint distribution of sample space–time covariance estimators of strictly stationary random fields. We do this without any marginal or joint distributional assumptions other
Covariance tapering for anisotropic nonsta-tionary Gaussian random fields with appli-cation to large scale spatial data sets
TLDR
A nonstationary parametric model is proposed, in which the underlying Gaussian random field may have different regularities in different directions, thus can be applied to model anisotropy and/or nonstationarity.
Fractional pseudodifferential modeling through spatiotemporal duality applied to Geosciences
Abstract potential theory and Dirichlet’s principle constitute the basic elements of the well- known classical theory of Markov processes and Dirichlet forms. In the spatial Gaussian framework, the
A general science-based framework for dynamical spatio-temporal models
Spatio-temporal statistical models are increasingly being used across a wide variety of scientific disciplines to describe and predict spatially-explicit processes that evolve over time.
Rejoinder on: A general science-based framework for dynamical spatio-temporal models
TLDR
An overview of a framework for incorporating scientific information to motivate dynamical spatio-temporal models is presented and it is demonstrated that it accommodates many different classes of scientific-based parameterizations as special cases in the case of nonlinear models.
Emulating and calibrating the multiple‐fidelity Lyon–Fedder–Mobarry magnetosphere–ionosphere coupled computer model
TLDR
This work focuses on relating the multifidelity output from LFM-MIX to field observations of ionospheric conductance, and builds a statistical emulator that leverages the multiple fidelities such that the less computationally demanding yet lower fidelity LFM -MIX is used to provide estimates of the higher fidelity output.
Структурно-параметричне проектування інформаційних систем ДПЛА для опера¬тивного природоресурсного і екологічного моніторингу навколишнього середовища
На підставі методу структурно-параметричного проектування запропонована методика проектування стану бортових систем, нашлемних систем управління і компоновка поля наземного комплексу управління
Change of spatiotemporal scale in dynamic models

References

SHOWING 1-7 OF 7 REFERENCES
Nonseparable, Stationary Covariance Functions for Space–Time Data
Geostatistical approaches to spatiotemporal prediction in environmental science, climatology, meteorology, and related fields rely on appropriate covariance models. This article proposes general
From S hoenberg to Pi k - Nevanlinna : : towards a omplete pi ture of thevariogram lass Metri spa es and positive de  nite fun tions
  • Trans . Am . Math . So .
  • 2009
Positive de  nite fun tions depending on the norm
  • Russian J . Math . Physi
  • 1993
Positive de  nite fun tions on l ∞
  • Statist . Probab . Lett
  • 1989
Covarian e tapering for interpolation of large spatialdatasets
  • Journal of Computational and Graphi al Statisti s
  • 2006
Nonseparable stationary anisotropi spa e - time ovarian e fun - tions
  • Sto hasti Environmental Resear h and Risk Assessment
  • 2006
In  ll asymptoti properties of tapered maximum likelihoodestimators
  • Annals of Statisti s , to appear
  • 2007