Sous-algèbres de Cartan des algèbres de Kac-Moody affines réelles presque compactes.
@article{Messaoud2006SousalgbresDC, title={Sous-alg{\`e}bres de Cartan des alg{\`e}bres de Kac-Moody affines r{\'e}elles presque compactes.}, author={H. Messaoud and G. Rousseau}, journal={Journal of Lie Theory}, year={2006}, volume={17}, pages={1-25} }
Almost compact real forms of affine Kac-Moody Lie algebras have been already classified [J. Algebra 267, 443-513]. In the present paper, we study the conjugate classes of their Cartan subalgebras under the adjoint groups or the full automorphism groups. Maximally compact Cartan subalgebras are all conjugated to a standard one $h$ and one may compare any Cartan subalgebra to $h$. Cartan subalgebras are related to non compact unitary roots of $h$ and one can see especially that the number of the… Expand
4 Citations
References
SHOWING 1-10 OF 54 REFERENCES
Les sous-algebres de Cartan reelles et la frontiere d'une orbite ouverte dans une variete de drapeaux
- Mathematics
- 1973
- 3
Infinite flag varieties and conjugacy theorems.
- Mathematics, Medicine
- Proceedings of the National Academy of Sciences of the United States of America
- 1983
- 233
- Highly Influential
- PDF
Spin and wedge representations of infinite-dimensional Lie algebras and groups.
- Mathematics, Medicine
- Proceedings of the National Academy of Sciences of the United States of America
- 1981
- 226
- PDF