Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz zeta function

@article{Choi2008SomeQO,
  title={Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz zeta function},
  author={Junesang Choi and P. J. Anderson and Hari M. Srivastava},
  journal={Applied Mathematics and Computation},
  year={2008},
  volume={199},
  pages={723-737}
}
In this paper, we first investigate several further interesting properties of the multiple Hurwitz–Lerch Zeta function Un(z, s,a) which was introduced recently by Choi et al. [J. Choi, D.S. Jang, H.M. Srivastava, A generalization of the Hurwitz–Lerch Zeta function, Integral Transform. Spec. Funct., 19 (2008)]. We then introduce and investigate some q-extensions of the multiple Hurwitz–Lerch Zeta function Un(z, s,a), the Apostol–Bernoulli polynomials B ðnÞ k ðx; kÞ of order n, and the Apostol… CONTINUE READING
Highly Cited
This paper has 33 citations. REVIEW CITATIONS

From This Paper

Topics from this paper.
22 Citations
67 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 67 references

Some results on q-analogue of the Lerch Zeta function

  • M. Cenkci, M. Can
  • Adv. Stud. Contemp. Math. 12
  • 2006
Highly Influential
8 Excerpts

On the Apostol–Bernoulli polynomials

  • Q.-M. Luo
  • Central European J. Math. 2
  • 2004
Highly Influential
7 Excerpts

On the theory of the multiple Gamma function

  • E. W. Barnes
  • Philos. Trans. Roy. Soc. London Ser. A 199
  • 1904
Highly Influential
5 Excerpts

Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials

  • Q.-M. Luo, H. M. Srivastava
  • J. Math. Anal. Appl. 308
  • 2005
Highly Influential
4 Excerpts

An integral operator associated with the Hurwitz–Lerch Zeta function and differential subordination

  • H. M. Srivastava, A. A. Attiya
  • Integral Transform. Spec. Funct. 18
  • 2007
Highly Influential
3 Excerpts

A generalization of the Hurwitz – Lerch Zeta function , Integral Transform

  • H. M. Srivastava Choi
  • Spec . Funct .
  • 2008

A generalization of the Hurwitz–Lerch Zeta function

  • J. Choi, D. S. Jang, H. M. Srivastava
  • Integral Transform. Spec. Funct. 19
  • 2008
1 Excerpt

Multiple q-Mahler measures and Zeta functions

  • Y. Gon, N. Kurokawa, H. Oyanagi
  • J. Number Theory 124
  • 2007

Similar Papers

Loading similar papers…