Some Inequalities for Singular Convolution Operators in L ^-spaces

@inproceedings{Seeger2010SomeIF,
  title={Some Inequalities for Singular Convolution Operators in L ^-spaces},
  author={Andreas Seeger},
  year={2010}
}
Suppose that a bounded function m satisfies a localized multiplier condition sup(>0 ||^"n(tp-)llM„ < °°, f°r some bump function <p. We show that under mild smoothness assumptions m is a Fourier multiplier in Lp. The approach uses the sharp maximal operator and Littlewood-Paleytheory. The method gives new results for lacunary maximal functions and for multipliers in Triebel-Lizorkin-spaces. Introduction. Given a bounded function m the associated multiplier transformation Tm is defined by [Tm/]A… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-10 of 13 references

Maximal and singular integral operators via Fourier transform estimates

J. Duoandikoetxea, J. L. Rubio de Francia
Invent. Math • 1986
View 4 Excerpts
Highly Influenced

Theory of function spaces, Birkhauser-Verlag

H. Triebel
Darm- stadt, • 1983
View 3 Excerpts
Highly Influenced

Maximal subspaces of Desov-spaces invariant under multiplication by characters

R. Johnson
Trans. Amer. Math. Soc • 1979
View 3 Excerpts
Highly Influenced

Hp-spaces of several variables

Ch. Fefferman, E. M. Stein
Acta Math • 1972
View 8 Excerpts
Highly Influenced

Singular integrals and differentiability properties of functions

E. M. Stein
1970
View 10 Excerpts
Highly Influenced

The Atomic Decomposition For

PARABOLIC Hp SPACES, AKIHITO UCHTYAMA, AKIHITO UCHIYAMA
2010
View 2 Excerpts

Maximal operators related to the Radon transform and the Calderon-Zygmund method of rotations

M. Christ, J. Duoandikoetxea, J. L. Rubio de Francia
Duke Math. J • 1986
View 1 Excerpt

On quasiradial Fourier multipliers and their maximal functions

A. Seeger
J. Reine Angew. Math • 1986
View 3 Excerpts

New thoughts on Desov-spaces

J. Peetre
1976

Similar Papers

Loading similar papers…