Solving ordinary differential equation systems by approximation in a graphical way

@inproceedings{Geda2007SolvingOD,
  title={Solving ordinary differential equation systems by approximation in a graphical way},
  author={G{\'a}bor Geda and Anik{\'o} V{\'a}gner},
  year={2007}
}
Our aim was to find a graphic numeric solution method for higher-order differential equations and differential equation systems. To understand this method the basic mathematical knowledge taught in the secondary school must be enough, we have to complete it with geometric meaning of differential quotient and generalization of knowledge about two-dimensional vector space. We considered it important to make this method easy to algorithm. Such method and its practical experience are shown in this… CONTINUE READING

From This Paper

Figures, tables, and topics from this paper.

References

Publications referenced by this paper.
Showing 1-8 of 8 references

Investigation of Stability of Nonlinear Differential Equations with Stochastic Methods, XXVI

G. Geda
Seminar on Stability Problems for Stochastic Models, • 2005

Kezdetiérték-probléma közelítő megoldásának egy geometriai szemléltetése

G. Geda
Tavaszi Szél, Debrecen, • 2005

Solving Initial Value Problem by Approximation in Different Graphic Ways

G. Geda
Intrnational Conference of PhD Students, • 2005

Raisz, Péterné., Differenciálegyenletek műszakiaknak

M. Rontó
Miskolci Egyetemi Kiadó, Miskolc, • 2004

A Famous Nonlinear Stocshastic Equation (Lotka-Volterra Model with Diffusion)

M. Arató
Mathematical and Computer Modelling, • 2003

Differenciálegyenletes modellek a középiskolában

L. Hatvani, L. Pintér
POLYGON, Szeged, • 1997

Matematikai módszerek a természettudományban

Pólya, Gy
Gondolat, Budapest, • 1984

Differenciálgeometria, Műszaki Könyvkiadó, Budapest

Gy. Szőkefalvi-Nagy, L. Gehér, P. Nagy
1979

Similar Papers

Loading similar papers…