Solutions of the optimal feedback control problem using Hamiltonian dynamics and generating functions

@article{Park2003SolutionsOT,
  title={Solutions of the optimal feedback control problem using Hamiltonian dynamics and generating functions},
  author={Chandeok Park and Daniel J. Scheeres},
  journal={42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)},
  year={2003},
  volume={2},
  pages={1222-1227 Vol.2}
}
  • Chandeok Park, Daniel J. Scheeres
  • Published in
    42nd IEEE International…
    2003
  • Mathematics
  • We show that the optimal cost function that satisfies the Hamilton-Jacobi-Bellman (HJB) equation is a generating function for a class of canonical transformations for the Hamiltonian dynamical system defined by the necessary conditions for optimality. This result allows us to circumvent the final time singularity in the HJB equation for a finite time problem, and allows us to analytically construct a nonlinear optimal feedback control and cost function that satisfies the HJB equation for a… CONTINUE READING

    Create an AI-powered research feed to stay up to date with new papers like this posted to ArXiv

    Figures from this paper.

    Citations

    Publications citing this paper.
    SHOWING 1-10 OF 14 CITATIONS

    Solving optimal feedback control problems by the Hamilton-Jacobi theory

    VIEW 1 EXCERPT
    CITES METHODS

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 11 REFERENCES

    Successive collocation: an approximation to optimal nonlinear control

    Finite-horizon optimal control and stabilization of time-scalable systems

    Pmedings of fize A " i m Conwol Corfererrce

    • P. TEiotras, M. Coders, M. Rotea
    • 1997

    Saridis , and 1 . Wen . Galsrkin approximation ofthe Gsncr - allzed Hamilton - Jacobi - Bellman equation

    • NM. 161 P. TEiotras Alberquerque, M.
    • Aufomofica Statedspendent Riceati equation techniques : An ove ~ \ ~ iow . lo Pmedings of fize A " i m Conwol Corfererrce
    • 1997

    Nonlinear optimal con1rol:aItematiwcs to hamiltoe jacobi equation

    • W. Lu
    • In Proceedings of fhe Americmi Corrwol Confkme,
    • 1996

    Grcenwocd. C1ossicolqi~u"s. Prenlice-Hall, Inc

    • D T.
    • Enflrwood Cliffs, N. J.,
    • 1977

    Applied Optimal Conml

    • A. E. Bryson, Y. Ho
    • Hemisphere Publishing Corp., London,
    • 1975

    Burphan. nonlinear system

    • J H.
    • IEEE Z"octiarf on Aufomnfic Cmwol,
    • 1969

    Optimal regulation of nonliocardynamical systems

    • D. L. Lukes
    • Siom Jomtd on Confrol,
    • 1966