Solution of the General Helmholtz Equation in Homogeneously Filled Waveguides Using a Static Green ’ s Function

@inproceedings{Balagangadhar1998SolutionOT,
  title={Solution of the General Helmholtz Equation in Homogeneously Filled Waveguides Using a Static Green ’ s Function},
  author={Mahesh Balagangadhar and Tapan K. Sarkar and Jalel Rejeb and Rafael R. Boix},
  year={1998}
}
The new boundary-integral method used in this paper illustrates a novel approach to solve the general Helmholtz equation in homogeneously filled waveguides. Based on the method-of-moments Laplacian solution, the main feature of this formulation is that the Helmholtz equation is “reduced” to the Poisson’s equation, which is then solved by using a static Green’s function. In other words, the Green’s function used in this method is frequency independent, unlike the most conventionally used Hankel… CONTINUE READING
1 Citations
20 References
Similar Papers

Citations

Publications citing this paper.

References

Publications referenced by this paper.
Showing 1-10 of 20 references

Extension of the MoM Laplacian solution to the general Helmholtz equation

  • J. Rejeb, T. K. Sarkar, E. Arvas
  • IEEE Trans. Microwave Theory Tech. , vol. 43, pp…
  • 1995
Highly Influential
7 Excerpts

The coupling of Fourier series with method of moments to solve Poisson-type equations

  • J. Rejeb, T. K. Sarkar, M. Balagangadhar
  • J. Electromagnetic Waves Applicat. , vol. 11, pp…
  • 1997
1 Excerpt

A comparison of formulations for the vector finite element analysis of waveguides

  • B. M. Dillon, J. P. Webb
  • IEEE Trans. Microwave Theory Tech. , vol. 42, pp…
  • 1994
1 Excerpt

Covariant-projection quadilateral elements for analysis of waveguides with sharp edges

  • R. Miniowitz, J. P. Webb
  • IEEE Trans. Microwave Theory Tech. , vol. 39, pp…
  • 1991
3 Excerpts

Eigen values for ridged and other waveguides containing corners of angle3 =2 or 2 by the finite element method

  • B. Schiff
  • IEEE Trans. Microwave Theory Tech. , vol. 39, pp…
  • 1991

Analysis of waveguides based on a surface integral formulation

  • M. Swaminathan
  • Ph.D. dissertation, Dept. ECE, Syracuse Univ…
  • 1990
1 Excerpt

Computation of cutoff wavenumbers of TE and TM modes in waveguides of arbitrary cross sections using surface integral formulation

  • M. Swaminathan, E. Arvas, T. K. Sarkar, S. R. Djordjevic
  • IEEE Trans. Microwave Theory Tech. , vol. 38, pp…
  • 1990
1 Excerpt

An efficient finite element method for nonconvex waveguides based on Hermitian polynomials

  • M. Israel, R. Miniowitz
  • IEEE Trans. Microwave Theory Tech. , vol. MTT-35…
  • 1987
2 Excerpts

Computation of the propagation characteristics of TE and TM modes in arbitrarily shaped hollow waveguides utilizing the conjugate gradient method

  • T. K. Sarkar
  • J. Electromagnetic Waves Applicat. , vol. 3, no…
  • 1985

Variational analysis of ridged waveguide modes

  • Y. Utsumi
  • IEEE Trans. Microwave Theory Tech. , vol. MTT-33…
  • 1985
1 Excerpt

Similar Papers

Loading similar papers…