Solitons in coupled Ablowitz-Ladik chains

@inproceedings{Malomed2002SolitonsIC,
  title={Solitons in coupled Ablowitz-Ladik chains},
  author={Boris A. Malomed},
  year={2002}
}
A model of two coupled Ablowitz-Ladik (AL) lattices is introduced. While the system as a whole is not integrable, it admits reduction to the integrable AL model for symmetric states. Stability and evolution of symmetric solitons are studied in detail analytically (by means of a variational approximation) and numerically. It is found that there exists a finite interval of positive values of the coupling constant in which the symmetric soliton is stable, provided that its mass is below a… CONTINUE READING
BETA

References

Publications referenced by this paper.
SHOWING 1-10 OF 10 REFERENCES

Phys

  • W. Mak, B. A. Malomed, P. L. Chu
  • Rev. E 55, 6134
  • 1997
Highly Influential
12 Excerpts

Soc

  • W. Mak, B. A. Malomed, P. L. Chu, J. Opt
  • Am. B 15, 1685
  • 1998
Highly Influential
4 Excerpts

Progress in Optics 43

  • B. A. Malomed
  • 69
  • 2002

Phys

  • O. O. Vakhnenko, V. O. Vakhnenko
  • Lett. A 196, 307 (); O.O. Vakhnenko, Phys. Rev. E…
  • 2001

Phys

  • A. Bülow, D. Hennig, H. Gabriel
  • Rev. E 59, 2380
  • 1999

Phys

  • D. Cai, A. R. Bishop, N. Grønbech-Jensen
  • Rev. E 56, 7246
  • 1997

Phys

  • N. Akhmediev, A. Ankiewicz
  • Rev. Lett. 70 , 2395 (); P.L. Chu, B.A. Malomed…
  • 1993

Phys

  • T. Ueda, W. L. Kath
  • Rev. A 42, 563
  • 1990

Phys

  • M. J. Ablowitz, J. F. Ladik, J. Math
  • 17, 1011
  • 1976

Phys

  • M. Toda
  • Rep. 18, 1
  • 1973

Similar Papers

Loading similar papers…