Software traceability with topic modeling

Abstract

Software traceability is a fundamentally important task in software engineering. The need for automated traceability increases as projects become more complex and as the number of artifacts increases. We propose an automated technique that combines traceability with a machine learning technique known as topic modeling. Our approach automatically records traceability links during the software development process and learns a probabilistic topic model over artifacts. The learned model allows for the semantic categorization of artifacts and the topical visualization of the software system. To test our approach, we have implemented several tools: an artifact search tool combining keyword-based search and topic modeling, a recording tool that performs prospective traceability, and a visualization tool that allows one to navigate the software architecture and view semantic topics associated with relevant artifacts and architectural components. We apply our approach to several data sets and discuss how topic modeling enhances software traceability, and vice versa.

DOI: 10.1145/1806799.1806817

Extracted Key Phrases

12 Figures and Tables

05020102011201220132014201520162017
Citations per Year

293 Citations

Semantic Scholar estimates that this publication has 293 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Asuncion2010SoftwareTW, title={Software traceability with topic modeling}, author={Hazeline U. Asuncion and Arthur U. Asuncion and Richard N. Taylor}, journal={2010 ACM/IEEE 32nd International Conference on Software Engineering}, year={2010}, volume={1}, pages={95-104} }