Sodium induces hypertrophy of cultured myocardial myoblasts and vascular smooth muscle cells.


The mechanisms of sodium-induced myocardial hypertrophy and vascular hypertrophy are poorly understood. We tested the hypothesis that a high sodium concentration can directly induce cellular hypertrophy. Neonatal rat myocardial myoblasts (MMbs) and vascular smooth muscle cells (VSMCs) were cultured in a 50:50 mixture of DMEM and M199 supplemented with 10% fetal bovine serum. When the monolayers reached approximately 80% confluence, normal sodium medium (146 mmol/L) was replaced with high sodium media (152 mmol/L, 160 mmol/L, and 182 mmol/L) for up to 5 days. Increasing sodium from a baseline concentration of 146 mmol/L to the higher concentrations for 5 days caused dose-related increases in cell mean diameter, cell volume, and cellular protein content in both MMbs and VSMCs. Increasing the sodium concentration by only 4% (from 146 mmol/L to 152 mmol/L) caused the following respective changes in MMbs and VSMCs: 8.5% and 8.7% increase in cell mean diameter, 27.6% and 27.0% increase in cell volume, and 55.7% and 46.7% increase in cellular protein content. The rate of protein synthesis, expressed as [3H]leucine incorporation, increased by 87% and 99% in MMbs after exposure to 152 mmol/L and 160 mmol/L sodium, respectively, compared with the 146-mmol/L sodium control group. Exposure of MMbs to medium with a sodium concentration of 10% above normal, ie, 160 mmol/L, caused a significant decrease (range, 26% to 44%) in the rate of protein degradation at multiple time points over a 48-hour period compared with normal sodium control cells. The increase in cellular protein content caused by 160 mmol/L sodium returned to normal within 3 days after MMbs were returned to a normal sodium medium. These findings support the hypothesis that sodium has a direct effect to induce cellular hypertrophy and may therefore be an important determinant in causing myocardial and/or vascular hypertrophy in subjects with increased sodium concentration in the extracellular fluid.

5 Figures and Tables

Citations per Year

505 Citations

Semantic Scholar estimates that this publication has 505 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Gu1998SodiumIH, title={Sodium induces hypertrophy of cultured myocardial myoblasts and vascular smooth muscle cells.}, author={Jian-wei Gu and Vidya Anand and Eugene Shek and Mary Courtney Moore and Ann L. Brady and W . C . Kelly and Thomas H. Adair}, journal={Hypertension}, year={1998}, volume={31 5}, pages={1083-7} }