Small gaps between primes
@article{Maynard2013SmallGB, title={Small gaps between primes}, author={James Maynard}, journal={Annals of Mathematics}, year={2013}, volume={181}, pages={383-413} }
We introduce a renement of the GPY sieve method for studying prime k-tuples and small gaps between primes. This renement avoids previous limitations of the method and allows us to show that for each k, the prime k-tuples conjecture holds for a positive proportion of admissible k-tuples. In particular, lim infn(pn+m pn) <1 for every integer m. We also show that lim inf(pn+1 pn) 600 and, if we assume the Elliott-Halberstam conjecture, that lim infn(pn+1 pn) 12 and lim infn(pn+2 pn) 600.
173 Citations
The existence of small prime gaps in subsets of the integers
- Mathematics
- 2013
We consider the problem of finding small prime gaps in various sets . Following the work of Goldston–Pintz–Yildirim, we will consider collections of natural numbers that are well-controlled in…
Polignac Numbers, Conjectures of Erdős on Gaps Between Primes, Arithmetic Progressions in Primes, and the Bounded Gap Conjecture
- Mathematics
- 2016
In the present work we prove a number of results about gaps between consecutive primes. The proofs need the method of Y. Zhang which led to the proof of infinitely many bounded gaps between primes.…
Bounded Gaps between Products of Special Primes
- Mathematics
- 2014
In their breakthrough paper in 2006, Goldston, Graham, Pintz and Yildirim proved several results about bounded gaps between products of two distinct primes. Frank Thorne expanded on this result,…
Small gaps between primes
- MathematicsGraduate Studies in Mathematics
- 2019
In this paper we study the work of James Maynard [10], in which he proves that lim inf n→∞ (pn+m − pn) <∞, thus establishing that there are infinitely many intervals of finite length that contain a…
Some heuristics on the gaps between consecutive primes
- Mathematics
- 2018
We give a review of the rigorous results on the gaps between consecutive primes. Next we present heuristic arguments leading to the formula for the number of pairs of consecutive primes pn, pn+1 < x…
Bounded gaps between primes in special sequences
- Mathematics
- 2014
We use Maynard's methods to show that there are bounded gaps between primes in the sequence $\{\lfloor n\alpha\rfloor\}$, where $\alpha$ is an irrational number of finite type. In addition, given a…
On a Conjecture of Erdős, Pólya and Turán on Consecutive Gaps Between Primes
- MathematicsAnalysis Mathematica
- 2018
Erdős, Pólya and Turán conjectured 70 years ago that a linear combination of consecutive differences of primes takes infinitely often both positive and negative values if and only if the (fixed)…
ON BOUNDED GAPS BETWEEN PRIMES AND MODERN SIEVE THEORY
- Mathematics
- 2014
We discuss the recent advances made towards the notorious twin prime conjecture and its generalisations. What follows is a lengthy exploration of the various techniques used in the field, both in…
On the distribution of gaps between consecutive primes
- Mathematics
- 2014
Erd\"os conjectured that the set J of limit points of d_n/logn contains all nonnegative numbers, where d_n denotes the nth primegap. The author proved a year ago (arXiv: 1305.6289) that J contains an…
Bounds on prime gaps as a consequence of the divergence of the series of reciprocal primes
- Mathematics
- 2017
In this paper, using the well known fact that the series of reciprocals of primes diverges, we obtain a general inequality for gaps of consecutive primes that holds for infinitely many primes. As it…
References
SHOWING 1-10 OF 13 REFERENCES
Primes in tuples I
- Mathematics
- 2009
We introduce a method for showing that there exist prime numbers which are very close together. The method depends on the level of distribution of primes in arithmetic progressions. Assuming the…
Bounded gaps between primes
- Mathematics
- 2014
It is proved that
lim inf n?8 (p n+1 -p n )<7×10 7 , where p n is the n -th prime.
Our method is a refinement of the recent work of Goldston, Pintz and Yildirim on the small gaps between…
Small gaps between products of two primes
- Mathematics
- 2009
Let qn denote the nth number that is a product of exactly two distinct primes. We prove that qn+1 − qn ⩽ 6 infinitely often. This sharpens an earlier result of the authors, which had 26 in place of…
Higher correlations of divisor sums related to primes III: small gaps between primes
- Mathematics
- 2007
We use divisor sums to approximate prime tuples and moments for primes in short intervals. By connecting these results to classical moment problems we are able to prove that, for any η > 0, a…
Limitations to the equi-distribution of primes I
- Mathematics
- 1989
In an earlier paper FG] we showed that the expected asymptotic formula (x; q; a) (x)==(q) does not hold uniformly in the range q < x= log N x, for any xed N > 0. There are several reasons to suspect…
Higher correlations of divisor sums related to primes II: variations of the error term in the prime number theorem
- Mathematics
- 2004
We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We…
Collected Papers
- PhysicsNature
- 1934
THIS volume is the first to be produced of the projected nine volumes of the collected papers of the late Prof. H. A. Lorentz. It contains a number of papersnineteen in all, mainly printed…
Primes in tup les
- I.Ann. of Math. (2) , 170(2):819–862
- 2009
A conjecture in prime number theory
- Symposia Mathematica, Vol. IV
- 1968
A conjecture in prim e number theory
- InSymposia Mathematica, Vol. IV
- 1968