Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons.


Neocortical layer 5 pyramidal neurons possess long apical dendrites that receive a significant portion of the neurons excitatory synaptic input. Passive neuronal models indicate that the time course of excitatory postsynaptic potentials (EPSPs) generated in the apical dendrite will be prolonged as they propagate toward the soma. EPSP propagation may, however, be influenced by the recruitment of dendritic voltage-activated channels. Here we investigate the properties and distribution of I(h) channels in the axon, soma, and apical dendrites of neocortical layer 5 pyramidal neurons, and their effect on EPSP time course. We find a linear increase (9 pA/100 microm) in the density of dendritic I(h) channels with distance from soma. This nonuniform distribution of I(h) channels generates site independence of EPSP time course, such that the half-width at the soma of distally generated EPSPs (up to 435 microm from soma) was similar to somatically generated EPSPs. As a corollary, a normalization of temporal summation of EPSPs was observed. The site independence of somatic EPSP time course was found to collapse after pharmacological blockade of I(h) channels, revealing pronounced temporal summation of distally generated EPSPs, which could be further enhanced by TTX-sensitive sodium channels. These data indicate that an increasing density of apical dendritic I(h) channels mitigates the influence of cable filtering on somatic EPSP time course and temporal summation in neocortical layer 5 pyramidal neurons.

Extracted Key Phrases

3 Figures and Tables

Citations per Year

830 Citations

Semantic Scholar estimates that this publication has 830 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Williams2000SiteIO, title={Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons.}, author={Stephen Ross Williams and Greg J Stuart}, journal={Journal of neurophysiology}, year={2000}, volume={83 5}, pages={3177-82} }