Sirtuin 1 protects the aging heart from contractile dysfunction mediated through the inhibition of endoplasmic reticulum stress-mediated apoptosis in cardiac-specific Sirtuin 1 knockout mouse model.

Abstract

BACKGROUND The longevity regulator Sirtuin 1 is an NAD+-dependent histone deacetylase that regulates endoplasmic reticulum stress and influences cardiomyocyte apoptosis during cardiac contractile dysfunction induced by aging. The mechanism underlying Sirtuin 1 function in cardiac contractile dysfunction related to aging has not been completely elucidated. METHODS We evaluated cardiac contractile function, endoplasmic reticulum stress, apoptosis, and oxidative stress in 6- and 12month-old cardiac-specific Sirtuin 1 knockout (Sirt1-/-) and control (Sirt1f/f) mice using western blotting and immunohistochemistry. Mice were injected with a protein disulphide isomerase inhibitor. For in vitro analysis, cultured H9c2 cardiomyocytes were exposed to either a Sirtuin 1 inhibitor or activator, with or without a mitochondrial inhibitor, to evaluate the effects of Sirtuin 1 on endoplasmic reticulum stress, nitric oxide synthase expression, and apoptosis. The effects of protein disulphide isomerase inhibition on oxidative stress and ER stress-related apoptosis were also investigated. RESULTS Compared with 6-month-old Sirt1f/f mice, marked impaired contractility was observed in 12-month-old Sirt1-/- mice. These findings were consistent with increased endoplasmic reticulum stress and apoptosis in the myocardium. Measures of oxidative stress and nitric oxide synthase expression were significantly higher in Sirt1-/- mice compared with those in Sirt1f/f mice at 6months. In vitro experiments revealed increased endoplasmic reticulum stress-mediated apoptosis in H9c2 cardiomyocytes treated with a Sirtuin 1 inhibitor; the effects were ameliorated by a Sirtuin 1 activator. Moreover, consistent with the in vitro findings, impaired cardiac contractility was demonstrated in Sirt1-/- mice injected with a protein disulphide isomerase inhibitor. CONCLUSION The present study demonstrates that the aging heart is characterized by contractile dysfunction associated with increased oxidative stress and endoplasmic reticulum stress and Sirtuin 1 might have the ability to protect the aging hearts from the inhibition of endoplasmic reticulum-mediated apoptosis.

DOI: 10.1016/j.ijcard.2016.11.247

Cite this paper

@article{Hsu2017Sirtuin1P, title={Sirtuin 1 protects the aging heart from contractile dysfunction mediated through the inhibition of endoplasmic reticulum stress-mediated apoptosis in cardiac-specific Sirtuin 1 knockout mouse model.}, author={Yu-Juei Hsu and Shih-Che Hsu and Chiao-Po Hsu and Yen-Hui Chen and Yung-Lung Chang and Junichi Sadoshima and Shih-Ming Huang and Chien-Sung Tsai and Chih-Yuan Lin}, journal={International journal of cardiology}, year={2017}, volume={228}, pages={543-552} }