Singularities of varieties admitting an endomorphism
@article{Broustet2012SingularitiesOV, title={Singularities of varieties admitting an endomorphism}, author={Ama{\"e}l Broustet and Andreas H{\"o}ring}, journal={Mathematische Annalen}, year={2012}, volume={360}, pages={439-456} }
Let $$X$$X be a normal variety such that $$K_X$$KX is $$\mathbb {Q}$$Q-Cartier, and let $$f:X \rightarrow X$$f:X→X be a finite surjective morphism of degree at least two. We establish a close relation between the irreducible components of the locus of singularities that are not log-canonical and the dynamics of the endomorphism $$f$$f. As a consequence we prove that if $$X$$X is projective and $$f$$f polarised, then $$X$$X has at most log-canonical singularities.
22 Citations
Characterizations of toric varieties via polarized endomorphisms
- MathematicsMathematische Zeitschrift
- 2018
Let X be a normal projective variety and $$f:X\rightarrow X$$f:X→X a non-isomorphic polarized endomorphism. We give two characterizations for X to be a toric variety. First we show that if X is…
Building blocks of amplified endomorphisms of normal projective varieties
- MathematicsMathematische Zeitschrift
- 2019
Let X be a normal projective variety. A surjective endomorphism $$f{:}X\rightarrow X$$ f : X → X is int-amplified if $$f^*L - L =H$$ f ∗ L - L = H for some ample Cartier divisors L and H . This is a…
On endomorphisms of projective varieties with numerically trivial canonical divisors
- Mathematics
- 2019
Let $X$ be a klt projective variety with numerically trivial canonical divisor. A surjective endomorphism $f:X\to X$ is amplified (resp.~quasi-amplified) if $f^*D-D$ is ample (resp.~big) for some…
Surjective endomorphisms of projective surfaces -- the existence of infinitely many dense orbits
- Mathematics
- 2020
Let $f \colon X \to X$ be a surjective endomorphism of a normal projective surface. When $\operatorname{deg} f \geq 2$, applying an (iteration of) $f$-equivariant minimal model program (EMMP), we…
Totally Invariant Divisors of Int-Amplified Endomorphisms of Normal Projective Varieties
- MathematicsThe Journal of Geometric Analysis
- 2020
We consider an arbitrary int-amplified surjective endomorphism f of a normal projective variety X over $$\mathbb {C}$$ C and its $$f^{-1}$$ f - 1 -stable prime divisors. We extend the early result in…
Non-isomorphic endomorphisms of Fano threefolds
- MathematicsMathematische Annalen
- 2021
Let $X$ be a smooth Fano threefold. We show that $X$ admits a non-isomorphic surjective endomorphism if and only if $X$ is either a toric variety or a product of $\mathbb{P}^1$ and a del Pezzo…
Semi-group structure of all endomorphisms of a projective variety admitting a polarized endomorphism
- Mathematics
- 2018
Let $X$ be a projective variety admitting a polarized (or more generally, int-amplified) endomorphism. We show: there are only finitely many contractible extremal rays; and when $X$ is…
Singularities of non-$\mathbb{Q}$-Gorenstein varieties admitting a polarized endomorphism
- Mathematics
- 2018
In this paper, we discuss a generalization of log canonical singularities in the non-Q-Gorenstein setting. We prove that if a normal complex projective variety has a non-invertible polarized…
References
SHOWING 1-10 OF 33 REFERENCES
Endomorphisms of smooth projective $3$-folds with nonnegative Kodaira dimension, II
- Mathematics
- 2007
Let X be a nonsingular projective 3-fold with non-negative Kodaira dimension κ(X) ≥ 0 which admits a nonisomorphic surjective morphism f : X → X onto itself. If κ(X) = 0 or 2, a suitable finite étale…
Galois coverings and endomorphisms of projective varieties
- Mathematics
- 2008
We prove that the vector bundle associated to a Galois covering of projective manifolds is ample (resp. nef) under very mild conditions. This results is applied to the study of ramified endomorphisms…
On endomorphisms of projective bundles
- Mathematics
- 2002
Abstract. Let X be a projective bundle. We prove that X admits an endomorphism of degree >1 and commuting with the projection to the base, if and only if X trivializes after a finite covering. When X…
The volume of an isolated singularity
- Mathematics
- 2010
We introduce a notion of volume of a normal isolated singularity that gener- alizes Wahl's characteristic number of surface singularities to arbitrary dimensions. We prove a basic monotonicity…
Endomorphisms of hypersurfaces and other manifolds
- Mathematics
- 2000
We prove in this note the following result: Theorem .− A smooth complex projective hypersurface of dimension ≥ 2 and degree ≥ 3 admits no endomorphism of degree > 1 . Since the case of quadrics is…
Birational Geometry of Algebraic Varieties
- Mathematics
- 2010
Needless to say, tlie prototype of classification theory of varieties is tlie classical classification theory of algebraic surfaces by the Italian school, enriched by Zariski, Kodaira and others. Let…
Invariant hypersurfaces of endomorphisms of the projective 3-space
- Mathematics
- 2011
We consider surjective endomorphisms f of degree > 1 on the projective n-space with n = 3, and f^{-1}-stable hypersurfaces V. We show that V is a hyperplane (i.e., deg(V) = 1) but with four possible…
A characteristic number for links of surface singularities
- Mathematics
- 1990
Milnor and Thurston [MT] define a characteristic number of a closed orientable 3-manifold M to be a real-valued topological invariant (r(M) such that: if (p(M) is defined, and M is a k-sheeted…
Polarized endomorphisms of uniruled varieties. With an appendix by Y. Fujimoto and N. Nakayama
- MathematicsCompositio Mathematica
- 2009
Abstract We show that polarized endomorphisms of rationally connected threefolds with at worst terminal singularities are equivariantly built up from those on ℚ-Fano threefolds, Gorenstein log del…
Holomorphic self-maps of singular rational surfaces
- Mathematics
- 2008
We give a new proof of the classification of normal singular surface germs admitting non-invertible holomorphic self-maps and due to J. Wahl. We then draw an analogy between the birational…