Singular integrals on symmetric spaces of real rank one

@inproceedings{Ionescu2002SingularIO,
  title={Singular integrals on symmetric spaces of real rank one},
  author={A D Ionescu},
  year={2002}
}
In this paper we prove a new variant of the Herz majorizing principle for operators defined byK-bi-invariant kernels with certain large-scale cancellation properties. As an application, we prove L p-boundedness of operators defined by Fourier multipliers which satisfy singular differential inequalities of the H örmander-Michlin type. We also find sharp bounds on the L p-norm of large imaginary powers of the critical L p-Laplacian. 

Topics from this paper.

References

Publications referenced by this paper.
SHOWING 1-10 OF 26 REFERENCES

SEEGER

J.-P. ANKERandA
  • Spectral multipliers of noncompact Riemannian manifolds, preprint
  • 1999
VIEW 1 EXCERPT

STEIN , L pmultipliers for noncompact symmetric spaces

M. E.
  • Proc . Nat . Acad . Sci . U . S . A .
  • 1999

andS

S. GIULINI, G. MAUCERI
  • MEDA, L p multipliers on noncompact symmetric spaces , J. Reine Angew. Math. 482
  • 1997
VIEW 1 EXCERPT

STEIN , H p spaces of several variables

M. E.
  • Acta Math .
  • 1993

andS

M. COWLING, S. GIULINI
  • MEDA, L p-Lq estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces, I , Duke Math. J.72
  • 1993

LOHOUÉ , Multiplicateurs sur certains espaces symétriques

N.
  • Amer . J . Math .
  • 1992

L p-estimates on functions of the Laplace operator

M. E. TAYLOR
  • Duke Math. J.58
  • 1989
VIEW 1 EXCERPT

Similar Papers

Loading similar papers…