Singular Lefschetz pencils

@inproceedings{Auroux2005SingularLP,
  title={Singular Lefschetz pencils},
  author={Denis Auroux and Simon K Donaldson and Ludmil Katzarkov},
  year={2005}
}
We consider structures analogous to symplectic Lefschetz pencils in the context of a closed 4-manifold equipped with a “near-symplectic” structure (i.e., a closed 2-form which is symplectic outside a union of circles where it vanishes transversely). Our main result asserts that, up to blowups, every near-symplectic 4-manifold (X,ω) can be decomposed into (a) two symplectic Lefschetz fibrations over discs, and (b) a fibre bundle over S1 which relates the boundaries of the Lefschetz fibrations to… CONTINUE READING
Highly Cited
This paper has 30 citations. REVIEW CITATIONS