Corpus ID: 170200940

Simulation du mouvement brownien et des diffusions

@inproceedings{Faure1992SimulationDM,
  title={Simulation du mouvement brownien et des diffusions},
  author={Olivier Faure},
  year={1992}
}
L'objet de cette these est l'etude de la simulation numerique de certains processus stochastiques, les diffusions, dont le mouvement brownien est un exemple typique. Nous commencons par quelques rappels sur le mouvement brownien au chapitre 1. Il s'agit d'une presentation elementaire, qui s'appuie sur la simulation numerique, et permet de rappeler quelques proprietes classiques. Puis nous presentons au chapitre 2 une simulation alternative du mouvement brownien, en un sens plus naturelle, qui s… Expand

Figures from this paper

Émergence du bruit dans les systèmes ouverts classiques et quantiques
Nous nous interessons dans cette these a certains modeles mathematiques permettant une description de systemes ouverts classiques et quantiques. Dans l'etude de ces systemes en interaction avec unExpand
Estimation récursive de la mesure invariante d'un processus de diffusion.
L'objet de la these est l'etude d'un algorithme, simple d'implementation et recursif, permettant de calculer l'integrale d'une fonction par rapport a la probabilite invariante d'un processus solutionExpand
Les théorèmes ergodiques en simulation
Ce travail se compose de deux parties independantes. La premiere est consacree a l'etude de la methode du decalage, dite aussi methode du Shift, pour le calcul d'esperances mathematiques en dimensionExpand
Iterated Stochastic Processes: Simulation and Relationship with High Order Partial Differential Equations
In this paper, we consider the composition of two independent processes: one process corresponds to position and the other one to time. Such processes will be called iterated processes. We firstExpand
VARIABLE STEP SIZE CONTROL IN THE NUMERICALSOLUTION OF STOCHASTIC DIFFERENTIAL EQUATIONS
We introduce a variable step size method for the numerical approximation of path-wise solutions to stochastic diierential equations (SDE's). The method, which is dependent on a representation ofExpand
Optimal transport bounds between the time-marginals of a multidimensional diffusion and its Euler scheme
In this paper, we prove that the time supremum of the Wasserstein distance between the time-marginals of a uniformly elliptic multidimensional diffusion with coefficients bounded together with theirExpand
Statistical Romberg extrapolation: A new variance reduction method and applications to option pricing
We study the approximation of Ef(X-T) by a Monte Carlo algorithm, where X is the solution of a stochastic differential equation and f is a given function. We introduce a new variance reductionExpand
Strongly Asymptotically Optimal Schemes for the Strong Approximation of Non-Lipschitzian Stochastic Differential Equations with respect to the Supremum Error
Our subject of study is strong approximation of systems of stochastic differential equations (SDEs) with respect to the supremum error criterion, and we seek approximations that perform stronglyExpand
Central Limit Theorem for the Multilevel Monte Carlo Euler Method and Applications to Asian Options
This paper focuses on studying the multilevel Monte Carlo method recently introduced by Giles [8] and significantly more efficient than the classical Monte Carlo one. Our aim is to prove a centralExpand
The Optimal Discretization of Stochastic Differential Equations
TLDR
An adaptive discretization is introduced that reflects the local properties of every single trajectory of the driving Brownian motion and is justified by the matching lower bound for arbitrary methods that are based on n evaluations on the average. Expand
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 115 REFERENCES
Discrétisation d'une équation différentielle stochastique et calcul approché d'espérances de fonctionnelles de la solution
© AFCET, 1986, tous droits réservés. L’accès aux archives de la revue « Modélisation mathématique et analyse numérique » implique l’accord avec les conditions générales d’utilisationExpand
Resolution trajectorielle et analyse numerique des equations differentielles stochastiques
Let (ξt) be the solution of the S.D.E. (E) of Section 1. Doss [3] has shown the existence of a difFerentiable function h and of a differentiate process parametrized by the process W,γ(W,t), suchExpand
Diffusions, Markov processes, and martingales
This celebrated book has been prepared with readers' needs in mind, remaining a systematic treatment of the subject whilst retaining its vitality. The second volume follows on from the first,Expand
Numerical Treatment of Stochastic Differential Equations
We define general Runge–Kutta approximations for the solution of stochastic differential equations (sde). These approximations are proved to converge in quadratic mean to the solution of an sde withExpand
A survey of numerical methods for stochastic differential equations
The development of numerical methods for stochastic differential equations has intensified over the past decade. The earliest methods were usually heuristic adaptations of deterministic methods, butExpand
An asymptotically efficient difference formula for solving stochastic differential equations
Time discretisations of teh vector stochastic differential equation are considered, where (y t) is a continuous scalar process whose distribution is absolutely continuous with respect to WienerExpand
Asymptotically efficient Runge-Kutta methods for a class of ITOˆ and Stratonovich equations
In certain applications of stochastic differential equations, approximate solutions must be found that depend only on samples of the driving process. It is known that the order of convergence of suchExpand
Un schéma multipas d'approximation de l'équation de Langevin
In the approximation of solutions of some second-order stochastic differential equations, a multistep method converges faster than the Cauchy-Euler scheme for usual stochastic differential equations.
On the Weak Convergence of Interpolated Markov Chains to a Diffusion
(*) x(t)-x ?+ S f(x(s), s) ds + S a(x(s), s) dw(s), under essentially the condition that the solution to (*) is unique in the sense of multivariate distributions, f(*, *), (., *) are bounded andExpand
Liens entre equations di erentielles stochastiques et ordinaires
954,254. Producing biaxially oriented films. IMPERIAL CHEMICAL INDUSTRIES Ltd. April 11, 1962 [April 12, 1961 ; Dec. 22, 1961], Nos. 13192/61 and 46038/61. Drawings to Specification. Heading B5B. InExpand
...
1
2
3
4
5
...