Simulation and reversal of n-qubit Hamiltonians using Hadamard matrices

@article{Leung2001SimulationAR,
  title={Simulation and reversal of n-qubit Hamiltonians using Hadamard matrices},
  author={D. Leung},
  journal={arXiv: Quantum Physics},
  year={2001}
}
  • D. Leung
  • Published 2001
  • Mathematics, Physics
  • arXiv: Quantum Physics
  • The ability to simulate one Hamiltonian with another is an important primitive in quantum information processing. In this paper, a simulation method for arbitrary $\sigma_z \otimes \sigma_z$ interaction based on Hadamard matrices (quant-ph/9904100) is generalized for any pairwise interaction. We describe two applications of the generalized framework. First, we obtain a class of protocols for selecting an arbitrary interaction term in an n-qubit Hamiltonian. This class includes the scheme given… CONTINUE READING
    13 Citations

    Figures from this paper.

    Simulating Hamiltonians in quantum networks: Efficient schemes and complexity bounds
    • 42
    • Highly Influenced
    • PDF
    Equivalence of Decoupling Schemes and Orthogonal Arrays
    • 21
    • PDF
    Pulse-controlled quantum gate sequences on a strongly coupled qubit chain
    • 1
    Quantum information processing in continuous time
    • 94
    • PDF
    Universal simulation of Hamiltonians using a finite set of control operations
    • 40
    • PDF
    Using Quantum Computers for Quantum Simulation
    • 87
    • PDF
    Quantum algorithms: A survey of some recent results
    • M. Roetteler
    • Computer Science
    • Informatik - Forschung und Entwicklung
    • 2006
    • 14
    A Concise Guide to Complex Hadamard Matrices
    • 232
    • PDF

    References

    SHOWING 1-10 OF 29 REFERENCES
    CHEMICAL PHYSICS LETTERS
    • 841
    • PDF
    Phys
    • Rev. A, 61:042310
    • 2000
    Eds) The CRC Handbook of Combinatorial Designs (CRC Press
    • Boca Raton,
    • 1996
    A Course in Combinatorics (Cambridge
    • 1992
    APPENDIX A: SCHUR-SUBSETS IN SYLVESTER MATRICES
    • APPENDIX A: SCHUR-SUBSETS IN SYLVESTER MATRICES
    • 1986
    Beth, arXive e-print quant-ph/0106077
    • Beth, arXive e-print quant-ph/0106077
    Beth, arXive e-print quant-ph/0106085v1
    • Beth, arXive e-print quant-ph/0106085v1
    Bull
    • Sciences Math., (2) 17
    • 1893
    Canad
    • J. Math. 31
    • 1979