Simulated annealing using a reversible jump Markov chain Monte Carlo algorithm for fuzzy clustering

In this paper, an approach for automatically clustering a data set into a number of fuzzy partitions with a simulated annealing using a reversible jump Markov chain Monte Carlo algorithm is proposed. This is in contrast to the widely used fuzzy clustering scheme, the fuzzy c-means (FCM) algorithm, which requires the a priori knowledge of the number of… CONTINUE READING