Simple Data-Driven Context-Sensitive Lemmatization

Abstract

Lemmatization for languages with rich inflectional morphology is one of the basic, indispensable steps in a language processing pipeline. In this paper we present a simple data-driven context-sensitive approach to lemmatizating word forms in running text. We treat lemmatization as a classification task for Machine Learning, and automatically induce class labels. We achieve this by computing a Shortest Edit Script (SES) between reversed input and output strings. A SES describes the transformations that have to be applied to the input string (word form) in order to convert it to the output string (lemma). Our approach shows competitive performance on a range of typologically different languages.

Extracted Key Phrases

5 Figures and Tables

Cite this paper

@article{Chrupala2006SimpleDC, title={Simple Data-Driven Context-Sensitive Lemmatization}, author={Grzegorz Chrupala}, journal={Procesamiento del Lenguaje Natural}, year={2006}, volume={37} }