Sharp distortion growth for bilipschitz extension of planar maps
@article{Kovalev2012SharpDG, title={Sharp distortion growth for bilipschitz extension of planar maps}, author={L. Kovalev}, journal={Conformal Geometry and Dynamics of The American Mathematical Society}, year={2012}, volume={16}, pages={124-131} }
This note addresses the quantitative aspect of the bilipschitz extension problem. The main result states that any bilipschitz embedding of $\mathbb R$ into $\mathbb R^2$ can be extended to a bilipschitz self-map of $\mathbb R^2$ with a linear bound on the distortion.
4 Citations
Radial extension of a bi-Lipschitz parametrization of a starlike Jordan curve
- Mathematics
- 2010
- 8
- Highly Influenced
- PDF
References
SHOWING 1-10 OF 38 REFERENCES