Corpus ID: 118807936

Semiampleness criteria for divisors on $\overline M_{0,n}$

@article{Fedorchuk2014SemiamplenessCF,
  title={Semiampleness criteria for divisors on \$\overline M_\{0,n\}\$},
  author={M. Fedorchuk},
  journal={arXiv: Algebraic Geometry},
  year={2014}
}
  • M. Fedorchuk
  • Published 2014
  • Mathematics
  • arXiv: Algebraic Geometry
We develop new characteristic-independent combinatorial criteria for semiampleness of divisors on $\overline{M}_{0,n}$. As an application, we associate to a cyclic rational quadratic form satisfying a certain balancedness condition an infinite sequence of semiample line bundles. We also give several sufficient and effective conditions for a symmetric divisor on $\overline{M}_{0,n}$ to be semiample or nef. 
3 Citations

Figures and Tables from this paper

References

SHOWING 1-10 OF 26 REFERENCES
New nef divisors on $\bar{M}_{0,n}$
Numerical criteria for divisors on $\overline {M}_{g}$ to be ample
  • A. Gibney
  • Mathematics
  • Compositio Mathematica
  • 2009
A non-boundary nef divisor on $\bar{M}_{0,12}$
Fulton's conjecture for M̅0, 7
Towards the ample cone of \overline{}_{,}
...
1
2
3
...