Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi

@article{Kripke1963SemanticalAO,
  title={Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi},
  author={S. Kripke},
  journal={Mathematical Logic Quarterly},
  year={1963},
  volume={9},
  pages={67-96}
}
  • S. Kripke
  • Published 1963
  • Mathematics
  • Mathematical Logic Quarterly
Publisher Summary This chapter discusses semantical analysis of modal logic ii and non-normal modal propositional calculi. The proof of sufficiency, which is omitted by many, proceeds by constructing a normal characteristic matrix by Lindenbaum's method. The tableaux that leads to a decision procedure for the propositional calculi is considered. 
1,128 Citations
Infinitary propositional normal modal logic
  • S. Radev
  • Mathematics, Computer Science
  • Stud Logica
  • 1987
  • 8
Proof Theory for Modal Logic
  • 53
  • PDF
A Tableau-Like Proof Procedure for Normal Modal Logics
  • Z. Ognjanovic
  • Computer Science, Mathematics
  • Theor. Comput. Sci.
  • 1994
  • 9
On Modal Logic with Propositional Quantifiers
  • R. A. Bull
  • Mathematics, Computer Science
  • J. Symb. Log.
  • 1969
  • 65
First-order modal tableaux
  • M. Fitting
  • Mathematics, Computer Science
  • Journal of Automated Reasoning
  • 2004
  • 40
Some Lectures on Modal Logic
  • 21
Standard Approach to Basic Modal Logics
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 23 REFERENCES
A Completeness Theorem in Modal Logic
  • S. Kripke
  • Mathematics, Computer Science
  • J. Symb. Log.
  • 1959
  • 828
  • PDF
On the Syntactical Construction of Systems of Modal Logic
  • 45
Improved Decision Procedures for Lewis's Calculus S4 and Von Wright's Calculus M
  • A. Anderson
  • Mathematics, Computer Science
  • J. Symb. Log.
  • 1954
  • 17
A Theory Of Formal Deducibility
  • 73
Some Theorems About the Sentential Calculi of Lewis and Heyting
  • 368
309-342. la logique de premier ordre S6
  • Logique et Anelyse B
  • 1965
Errata: An extension algebra and the modal system T
  • E. Lemmon
  • Mathematics, Computer Science
  • Notre Dame J. Formal Log.
  • 1960
  • 12
Provability in Logic
  • 130
Time And Modality
  • 648
Semantic Entailment And Formal Derivability
  • 273
...
1
2
3
...