Selfsimilarity in the Birkhoff Sum of the Cotangent Function

@inproceedings{Knill2012SelfsimilarityIT,
  title={Selfsimilarity in the Birkhoff Sum of the Cotangent Function},
  author={Oliver Knill},
  year={2012}
}
We prove that the Birkhoff sum Sn(α) = 1 n ∑n k=1 g(kα) of g = cot(πx) and with golden ratio α converges in the sense that the sequence of functions sn(x) = S[xq2n]/q2n with Fibonacci qn converges to a self similar limiting function s(x) on [0, 1] which can be computed analytically. While for any continuous function g, the Birkhoff limiting function is s(x) = Mx by Birkhoff’s ergodic theorem, we get so examples of random variables Xn, where the limiting function of S[xn]/n → s(x) exists along… CONTINUE READING
2 Citations
12 References
Similar Papers

Citations

Publications citing this paper.
Showing 1-2 of 2 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 12 references

Self-similarity and growth in Birkhoff sums for the golden rotation

  • O. Knill, F. Tangerman
  • Nonlinearity, 24(11):3115–3127
  • 2011
Highly Influential
10 Excerpts

Number Theory

  • H. Cohen
  • Volume II, Analytic and Modern Tools. Springer…
  • 2007
Highly Influential
7 Excerpts

Ergodic Theory of Numbers

  • K. Dajani, C. Kraaikamp
  • American Mathematical Society
  • 2002
1 Excerpt

Introduction to the modern theory of dynamical systems

  • A. Katok, B. Hasselblatt
  • volume 54 of Encyclopedia of Mathematics and its…
  • 1995
2 Excerpts

Ergodic Theory, volume 115 of Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen

  • I. P. Cornfeld, S.V.Fomin, Ya.G.Sinai
  • 1982
1 Excerpt

Notes on the theory of series

  • G. H. Hardy, J. E. Littlewood
  • XXIV. A curious powerseries. Proc. Cambridge…
  • 1946
1 Excerpt

Notes on the theory of series . XXIV . A curious powerseries

  • J. E. Littlewood.
  • Bulletin of the Calcutta Mathematica Society
  • 1930

Similar Papers

Loading similar papers…