Self-consistent Maxwell-Bloch theory of quantum-dot-population switching in photonic crystals
@article{Takeda2011SelfconsistentMT, title={Self-consistent Maxwell-Bloch theory of quantum-dot-population switching in photonic crystals}, author={Hiroyuki Takeda}, journal={Physical Review A}, year={2011}, volume={83} }
We theoretically demonstrate the population switching of quantum dots (QD's), modeled as two-level atoms in idealized one-dimensional (1D) and two-dimensional (2D) photonic crystals (PC's) by self-consistent solution of the Maxwell-Bloch equations. In our semiclassical theory, energy states of the electron are quantized, and electron dynamics is described by the atomic Bloch equation, while electromagnetic waves satisfy the classical Maxwell equations. Near a waveguide cutoff in a photonic band…
Figures from this paper
16 Citations
Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers
- Physics
- 2017
Orbit (16/12/2018) Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers We present a powerful computational approach to simulate the threshold behavior of…
Semiclassical analysis of two-level collective population inversion using photonic crystals in three-dimensional systems
- Physics
- 2012
I theoretically demonstrate the population inversion of collective two-level atoms using photonic crystals in three-dimensional (3D) systems by self-consistent solution of the semiclassical…
Semiclassical modeling of coupled quantum-dot–cavity systems: From polaritonlike dynamics to Rabi oscillations
- Physics
- 2020
Semiconductor quantum dots in photonic cavities are strongly coupled light-matter systems with prospective applications in optoelectronic devices and quantum information processing. Here we present a…
Theory and modelling of light-matter interactions in photonic crystal cavity systems coupled to quantum dot ensembles
- Physics
- 2017
Photonic crystal microcavity quantum dot lasers show promise as high quality-factor, low threshold lasers, that can be integrated on-chip, with tunable room temperature operations. However, such…
Optoelectronic Device Simulations Based on Macroscopic Maxwell–Bloch Equations
- PhysicsAdvanced Theory and Simulations
- 2019
Due to their intuitiveness, flexibility, and relative numerical efficiency, the macroscopic Maxwell–Bloch (MB) equations are a widely used semiclassical and semi‐phenomenological model to describe…
Efficient computation of spontaneous emission dynamics in arbitrary photonic structures
- Physics
- 2015
Defining a quantum mechanical wavefunction for photons is one of the remaining open problems in quantum physics. Thus quantum states of light are usually treated within the realm of second…
Macroscopic response in active nonlinear photonic crystals.
- PhysicsOptics letters
- 2013
The microscopic Maxwell equations and polarization dynamics can be simplified to a macroscopic one-dimensional problem in the direction of group velocity and the analytical results accurately recapture the results of exact numerical methods.
Universal Vector–Scalar Potential Framework for Inhomogeneous Electromagnetic System and Its Application in Semiclassical Quantum Electromagnetics
- PhysicsIEEE Transactions on Plasma Science
- 2021
In this work, numerical solution to a general electromagnetic (EM) system is studied using a formalism based on the formulas for the E–B–A– $\phi $ formulas with different gauge conditions. The…
Computation of Spontaneous Emission dynamics in Colored Vacua
- Physics
- 2014
We present an efficient time domain numerical scheme for computing spontaneous emission dynamics in colored vacua. Starting from first principles, we map the unitary evolution of a dressed two-level…
Resonant dipole–dipole interaction in confined and strong-coupling dielectric geometries
- Physics
- 2013
Using the electromagnetic response function of an electric dipole located within a dielectric geometry, we derive the mathematical equivalence between the classical response and quantum mechanical…
References
SHOWING 1-10 OF 101 REFERENCES
Switching dynamics and ultrafast inversion control of quantum dots for on-chip optical information processing
- Physics
- 2009
We demonstrate dynamical near-complete inversion switching of a two-level quantum dot driven by picosecond optical pulses in a bimodal photonic band gap (PBG) waveguide at microwatt power levels.…
Microscopic theory of multiple-phonon-mediated dephasing and relaxation of quantum dots near a photonic band gap
- Physics
- 2010
We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot)…
Coherent all-optical switching by resonant quantum-dot distributions in photonic band-gap waveguides
- Physics
- 2007
We study the detailed propagative characteristics of optical pulses in photonic band-gap (PBG) waveguides, coupled near resonantly to inhomogeneously broadened distributions of quantum dots. The line…
Non-Markovian quantum fluctuations and superradiance near a photonic band edge
- Physics
- 1998
We discuss a point model for the collective emission of light from N two-level atoms in a photonic band-gap material, each with an atomic resonant frequency near the edge of the gap. In the limit of…
Coupled Maxwell-Pseudospin equations for investigation of self-induced transparency effects in a degenerate three-level quantum system in two dimensions: Finite-difference time-domain study
- Physics
- 2002
We extend to more than one spatial dimension the semiclassical full-wave vector Maxwell-Bloch equations for the purpose of achieving an adequate and rigorous description of ultrashort pulse…
Single-atom switching in photonic crystals
- Physics
- 2001
We describe the role of first non-Markovian corrections to resonance fluorescence in photonic crystals, using a perturbative expansion of the Heisenberg equations of motion in powers of the…
Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency.
- PhysicsPhysical review. B, Condensed matter
- 1996
The properties of resonant modes which arise from the introduction of local defects in two-dimensional ~2D! and 3D photonic crystals are investigated and it is shown that the properties of these modes can be controlled by simply changing the nature and size of the defects.
Resonance fluorescence in photonic band gap waveguide architectures: Engineering the vacuum for all-optical switching
- Physics
- 2004
We describe the spectral characteristics of the radiation scattered by two-level atoms (quantum dots) driven by a strong external field, and coupled to a photonic crystal radiation reservoir. We show…
Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip
- Physics
- 2004
We demonstrate a trimodal waveguide architecture in a three-dimensional (3D) photonic-band-gap (PBG) material, in which the local electromagnetic density of states (LDOS) within and adjacent to the…
Temperature Dependence of Optical Linewidth in Single InAs Quantum Dots
- Physics
- 2006
We consider the temperature dependence of the exciton linewidth in single InAs self-assembled quantum dots. We show that in cases where etched mesas are used to isolate the dots, the magnitude of the…