The authors derive a method for selecting exemplars for training a multilayer feedforward network architecture to estimate an unknown (deterministic) mapping from clean data, i.e., data measured either without error or with negligible error. The objective is to minimize the data requirement of learning. The authors choose a criterion for selecting training examples that works well in conjunction with the criterion used for learning, here, least squares. They proceed sequentially, selecting anâ€¦Â CONTINUE READING

2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld) â€¢ 2016