# Second-order hyperbolic Fuchsian systems and applications

@inproceedings{Beyer2010SecondorderHF, title={Second-order hyperbolic Fuchsian systems and applications}, author={Florian Beyer and Philippe G. LeFloch}, year={2010} }

We introduce a new class of singular partial differential equations, referred to as the second-order hyperbolic Fuchsian systems, and we investigate the associated initial value problem when data are imposed on the singularity. First, we establish a general existence theory of solutions with asymptotic behavior prescribed on the singularity, which relies on a new approximation scheme, suitable also for numerical purposes. Second, this theory is applied to the (vacuum) Einstein equations for… CONTINUE READING

Create an AI-powered research feed to stay up to date with new papers like this posted to ArXiv

#### Citations

##### Publications citing this paper.

SHOWING 1-10 OF 16 CITATIONS

## Smooth Gowdy-symmetric generalized Taub–NUT solutions

VIEW 8 EXCERPTS

CITES BACKGROUND & METHODS

## Contracting asymptotics of the linearized lapse-scalar field sub-system of the Einstein-scalar field equations

VIEW 4 EXCERPTS

CITES METHODS & BACKGROUND

## A class of solutions to the Einstein equations with AVTD behavior in generalized wave gauges

VIEW 4 EXCERPTS

CITES BACKGROUND & METHODS

## Self–gravitating fluid flows with Gowdy symmetry near cosmological singularities

VIEW 6 EXCERPTS

CITES BACKGROUND

## A regime of linear stability for the Einstein-scalar field system with applications to nonlinear Big Bang formation

VIEW 5 EXCERPTS

CITES BACKGROUND & METHODS

HIGHLY INFLUENCED

## Quasi-linear symmetric hyperbolic Fuchsian systems in several space dimensions

VIEW 4 EXCERPTS

CITES METHODS & BACKGROUND

## The Fuchsian approach to global existence for hyperbolic equations

VIEW 1 EXCERPT

CITES METHODS

#### References

##### Publications referenced by this paper.

SHOWING 1-10 OF 42 REFERENCES

## Global aspects of the Cauchy problem in general relativity

VIEW 4 EXCERPTS

HIGHLY INFLUENTIAL

## Cosmic Censorship for Gowdy Spacetimes

VIEW 7 EXCERPTS

HIGHLY INFLUENTIAL

## Global properties of Gowdy spacetimes with T3 × R topology☆

VIEW 2 EXCERPTS

HIGHLY INFLUENTIAL

## A Method for Generating New Solutions of Einstein's Equation. II

VIEW 3 EXCERPTS

HIGHLY INFLUENTIAL

## A Method for generating solutions of Einstein's equations

VIEW 3 EXCERPTS

HIGHLY INFLUENTIAL

## Regularity of Cauchy horizons in S2 × S1

VIEW 1 EXCERPT

## General Relativity and the Einstein Equations

VIEW 1 EXCERPT

## Strong cosmic censorship in T-3-Gowdy spacetimes

VIEW 2 EXCERPTS