Secant varieties of Segre–Veronese varieties
@article{Raicu2010SecantVO, title={Secant varieties of Segre–Veronese varieties}, author={Claudiu Raicu}, journal={Algebra \& Number Theory}, year={2010}, volume={6}, pages={1817-1868} }
Secant varieties of Segre and Veronese varieties (and more generally Segre-Veronese varieties, which are embeddings of a product of projective spaces via the complete linear system of an ample line bundle) are very classical objects that go back to the Italian school of mathematics in the 19-th century. Despite their apparent simplicity, little is known about their equations, and even less about the resolutions of their coordinate rings. The main goal of this thesis is to introduce a new method…
75 Citations
On the dimensions of secant varieties of Segre-Veronese varieties
- Mathematics
- 2013
This paper explores the dimensions of higher secant varieties to Segre-Veronese varieties. The main goal of this paper is to introduce two different inductive techniques. These techniques enable one…
ON THE SECANT DEFECTIVITY OF SEGRE-VERONESE VARIETIES
- Mathematics
- 2010
Let X ⊆ PN be a non-degenerate projective variety of dimension d. Then the sth secant variety of X, denoted σs(X), is the Zariski closure of the union of linear spans of s-tuples of points lying on…
Most secant varieties of tangential varieties to Veronese varieties are nondefective
- Mathematics
- 2015
We prove a conjecture stated by Catalisano, Geramita, and Gimigliano in 2002, which claims that the secant varieties of tangential varieties to the $d$th Veronese embedding of the projective…
Are all Secant Varieties of Segre Products Arithmetically Cohen-Macaulay?
- Mathematics
- 2016
When present, the Cohen-Macaulay property can be useful for finding the minimal defining equations of an algebraic variety. It is conjectured that all secant varieties of Segre products of projective…
Secant varieties of toric varieties arising from simplicial complexes
- MathematicsLinear Algebra and its Applications
- 2020
Plücker varieties and higher secants of Sato's Grassmannian
- Mathematics
- 2014
Every Grassmannian, in its Plucker embedding, is defined by quadratic polynomials. We prove a vast, qualitative, generalisation of this fact to what we call Plucker varieties. A Plucker variety is in…
Higher secant varieties of P ^ n x P ^ m embedded in bi-degree
- Mathematics
Let X (n,m) (1,d) denote the Segre-Veronese embedding of P × P via the sections of the sheaf O(1, d). We study the dimensions of higher secant varieties of X (n,m) (1,d) and we prove that there is no…
3x3 Minors of Catalecticants
- Mathematics
- 2010
Secant varieties to Veronese embeddings of projective space are classical varieties whose equations are not completely understood. Minors of catalecticant matrices furnish some of their equations,…
Secant Cumulants and Toric Geometry
- Mathematics
- 2014
We study the secant line variety of the Segre product of projective spaces using special cumulant coordinates adapted for secant varieties. We show that the secant variety is covered by open normal…
Syzygies of Segre embeddings and $\Delta$-modules
- Mathematics
- 2010
We study syzygies of the Segre embedding of P(V_1) x ... x P(V_n), and prove two finiteness results. First, for fixed p but varying n and V_i, there is a finite list of "master p-syzygies" from which…
References
SHOWING 1-10 OF 52 REFERENCES
Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes
- Mathematics
- 2010
We study the secant varieties of the Veronese varieties and of Veronese reembeddings of a smooth projective variety. We give some conditions, under which these secant varieties are set-theoretically…
3x3 Minors of Catalecticants
- Mathematics
- 2010
Secant varieties to Veronese embeddings of projective space are classical varieties whose equations are not completely understood. Minors of catalecticant matrices furnish some of their equations,…
3× 3 MINORS OF CATALECTICANTS
- Mathematics
- 2010
Secant varieties of Veronese embeddings of projective space are classical varieties whose equations are far from being understood. Minors of catalecticant matrices furnish some of their equations,…
On the ideals and singularities of secant varieties of Segre varieties
- Mathematics
- 2006
We find minimal generators for the ideals of secant varieties of Segre varieties in the cases of σk(ℙ1 × ℙn × ℙm) for all k, n, m, σ2(ℙn × ℙm × ℙp × ℙr) for all n, m, p, r (GSS conjecture for four…
On the Ideals of Secant Varieties of Segre Varieties
- Mathematics, Computer ScienceFound. Comput. Math.
- 2004
Basic techniques for determining the ideals of secant varieties of Segre varieties are established and a conjecture on the generators of the ideal of the first secant variety in the case of three factors is solved.
Higher secant varieties of Segre-Veronese varieties
- Mathematics
- 2003
We study the dimension of the higher secant varieties $X^s$ of ${\Bbb X} = {\Bbb P}^{n_1}\times ...\times {\Bbb P}^{n_t}$ embedded the morphism given by ${\cal O}_{\Bbb X}({a_1,...,a_t})$. We call it…
Secant varieties of ℙ2 × ℙn embedded by 𝒪(1, 2)
- MathematicsJ. Lond. Math. Soc.
- 2012
A more general construction for producing explicit matrix equations that vanish on secant varieties of products of projective spaces is proposed, based on previous work of Strassen and Ottaviani.