Corpus ID: 235458423

Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

@inproceedings{Abdallah2021SearchFT,
  title={Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in Au+Au collisions at \$\sqrt\{s\_\{NN\}\}\$ = 200 GeV},
  author={S. Abdallah and J. Adam and L. Adamczyk and J. Adams and J. K. Adkins and G. Agakishiev and I. Aggarwal and M. Aggarwal and Z. Ahammed and I. Alekseev and D. Anderson and A. Aparin and E. Aschenauer and M. U. Ashraf and F. Atetalla and A. Attri and G. S. Averichev and V. Bairathi and W. Baker and J. Cap and K. Barish and A. Behera and R. Bellwied and P. Bhagat and A. Bhasin and J. Bielcik and J. Biel{\vc}{\'i}kov{\'a} and I. Bordyuzhin and J. Brandenburg and A. Brandin and I. Bunzarov and J. Butterworth and X. Z. Cai and H. Caines and M. Calder'ondelaBarcaS'anchez and D. Cebra and I. Chakaberia and P. Chaloupka and B. Chan and F. Chang and Z. Chang and N. Chankova-Bunzarova and A. Chatterjee and S. Chattopadhyay and D. Chen and J. Chen and J. H. Chen and X. Chen and Z. Chen and J. Cheng and M. Chevalier and S. Choudhury and W. Christie and X. Chu and H. Crawford and M. Csan'ad and M. Daugherity and T. Dedovich and I. Deppner and A. Derevschikov and A. Dhamija and L. D. Carlo and L. Didenko and X. Dong and J. Drachenberg and J. Dunlop and N. Elsey and J. Engelage and G. Eppley and S. Esumi and A. Ewigleben and O. Eyser and R. Fat{\'e}mi and F. Fawzi and S. Fazio and P. Federi{\vc} and J. Fedori{\vs}in and C. Feng and Y. Feng and P. Filip and E. Finch and Y. Fisyak and A. Francisco and C. Fu and L. Fulek and C. Gagliardi and T. Galatyuk and F. Geurts and N. Ghimire and A. Gibson and K. Gopal and X. Gou and D. Grosnick and A. Gupta and W. Guryn and A. Hamad and Ahmed M. Hamed and Y. Han and S. Harabasz and M. Harasty and J. Harris and H. Harrison and S. He and W. He and X. He and Y. He and S. Heppelmann and N. Herrmann and E. Hoffman and L. Holub and Y. Hu and H. Huang and S. Huang and T. Huang and X. Huang and Y. Huang and T. Humanic and G. Igo and D. Isenhower and W. Jacobs and C. Jena and A. Jentsch and Y. Ji and J. Jia and K. Jiang and X. Ju and E. Judd and S. Kabana and M. L. Kabir and S. Kagamaster and D. Kalinkin and K. Kang and D. Kapukchyan and K. Kauder and H. Ke and D. Keane and A. Kechechyan and Y. Khyzhniak and D. Kikola and C. Kim and B. Kimelman and D. Kincses and I. Kisel and A. Kiselev and A. Knospe and L. Kochenda and L. Kosarzewski and L. Kramarik and P. Kravtsov and Lokesh Kumar and S. Kumar and R. Elayavalli and J. Kwasizur and S. Lan and J. Landgraf and J. Lauret and A. Lebedev and R. Lednick{\'y} and J. H. Lee and Y. Leung and C. Li and W. Li and X. Li and Y. Li and X. Liang and Y. Liang and R. Licenik and T. Lin and Y. Lin and M. Lisa and F. Liu and H. Liu and P. Liu and T. Liu and X. Liu and Y. Liu and Z. Liu and T. Ljubi{\vc}i{\'c} and W. Llope and R. Longacre and E. Loyd and N. Lukow and X. Luo and L. Ma and R. Ma and Y. Ma and N. Magdy and R. Majka and D. Mallick and S. Margetis and C. Markert and H. Matis and J. Mazer and N. Minaev and S. Mioduszewski and B. Mohanty and M. Mondal and I. Mooney and D. Morozov and A. Mukherjee and M. Nagy and J. Nam and M. Nasim and K. Nayak and D. Neff and J. Nelson and D. Nemes and M. Nie and G. Nigmatkulov and T. Niida and R. Nishitani and L. Nogach and T. Nonaka and A. S. Nunes and G. Odyniec and A. Ogawa and S. Oh and V. Okorokov and B. Page and R. Pak and A. Pandav and A. Pandey and Y. Panebratsev and P. Parfenov and B. Pawlik and D. Pawłowska and H. Pei and C. Perkins and L. Pinsky and R. L. Pint'er and J. Pluta and B. R. Pokhrel and G. Ponimatkin and J. Porter and M. Posik and V. Prozorova and N. Pruthi and M. Przybycien and J. Putschke and H. Qiu and A. Quintero and C. Racz and S. Radhakrishnan and N. Raha and R. Ray and R. Reed and H. Ritter and M. Robotkova and O. V. Rogachevskiy and J. Romero and L. Ruan and J. Rusnak and N. Sahoo and H. Sako and S. Salur and J. Sandweiss and S. Sato and W. Schmidke and N. Schmitz and B. Schweid and F. Seck and J. Seger and M. Sergeeva and R. Seto and P. Seyboth and N. Shah and E. Shahaliev and P. Shanmuganathan and M. Shao and T. Shao and A. I. Sheikh and D. Shen and S. Shi and Y. Shi and Q. Shou and E. Sichtermann and R. Sikora and M. Simko and J. Singh and S. Singha and M. Skoby and N. Smirnov and Y. Sohngen and W. Solyst and P. Sorensen and H. Spinka and B. Srivastava and T. Stanislaus and M. Stefaniak and D. Stewart and M. Strikhanov and B. Stringfellow and A. Suaide and M. Sumbera and B. Summa and X. Sun and Y. Sun and B. Surrow and D. Svirida and Z. Sweger and P. Szymanski and A. Tang and Z. Tang and A. Taranenko and T. Tarnowsky and J. Thomas and A. Timmins and D. Tlust{\'y} and T. Todoroki and M. Tokarev and C. Tomkiel and S. Trentalange and R. Tribble and P. Tribedy and S. Tripathy and T. Truhlar and B. Trzeciak and O. Tsai and Z. Tu and T. Ullrich and D. Underwood and I. Upsal and G. Buren and J. Vanek and A. Vasiliev and I. Vassiliev and V. Verkest and F. Videbaek and S. Vok{\'a}l and S. Voloshin and F. Wang and G. Wang and J. S. Wang and P. Wang and Y. Wang and Z. Wang and J. Webb and P. Weidenkaff and L. Wen and G. Westfall and H. Wieman and S. Wissink and J. Wu and Y. Wu and B. Xi and Z. Xiao and G. Xie and W. Xie and H. Xu and N. Xu and Q. Xu and Y. Xu and Z. Xu and C. Yang and Q. Yang and S. Yang and Y. Yang and Z. Ye and L. Yi and K. Yip and Y. Yu and H. Zbroszczyk and W. Zha and C. Zhang and D. Zhang and S. Zhang and X. P. Zhang and Y. Zhang and Z. J. Zhang and Z. Zhang and J. Zhao and C. Zhou and X. Zhu and Z. Zhu and M. Zurek and M. Zyzak},
  year={2021}
}
The chiral magnetic effect (CME) refers to charge separation along a strong magnetic field due to imbalanced chirality of quarks in local parity and charge-parity violating domains in quantum chromodynamics. The experimental measurement of the charge separation is made difficult by the presence of a major background from elliptic azimuthal anisotropy. This background and the CME signal have different sensitivities to the spectator and participant planes, and could thus be determined by… Expand

Figures and Tables from this paper

Revisit the Chiral Magnetic Effect Expectation in Isobaric Collisions at the Relativistic Heavy Ion Collider
Isobaric 96 44Ru+ 96 44Ru and 96 40Zr+ 96 40Zr collisions at √ snn = 200 GeV have been conducted at the Relativistic Heavy Ion Collider to circumvent the large flow-induced background in searchingExpand
Two- and three-particle nonflow contributions to the chiral magnetic effect measurement by spectator and participant planes in relativistic heavy ion collisions
Correlation measurements with respect to the spectator and participant planes in relativistic heavy ion collisions were proposed to extract the chiral magnetic effect (cme) from background dominatedExpand
Counting Topological Windings of Gauge Fields with Chiral Magnetic Effect
Anping Huang, Shuzhe Shi, Shu Lin, Xingyu Guo, 5 and Jinfeng Liao ∗ School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China. Department of Physics,Expand