- Published 2009 in Machine Learning

We present Searn, an algorithm for integrating search and learning to solve complex structured prediction problems such as those that occur in natural language, speech, computational biology, and vision. Searn is a meta-algorithm that transforms these complex problems into simple classification problems to which any binary classifier may be applied. Unlike current algorithms for structured learning that require decomposition of both the loss function and the feature functions over the predicted structure, Searn is able to learn prediction functions for any loss function and any class of features. Moreover, Searn comes with a strong, natural theoretical guarantee: good performance on the derived classification problems implies good performance on the structured prediction problem.

Citations per Year

Semantic Scholar estimates that this publication has **326** citations based on the available data.

See our **FAQ** for additional information.

Showing 1-10 of 236 extracted citations

Highly Influenced

6 Excerpts

Highly Influenced

6 Excerpts

Highly Influenced

10 Excerpts

Highly Influenced

4 Excerpts

Highly Influenced

11 Excerpts

Highly Influenced

13 Excerpts

Highly Influenced

5 Excerpts

Highly Influenced

4 Excerpts

Highly Influenced

6 Excerpts

Highly Influenced

5 Excerpts

Showing 1-10 of 62 references

Highly Influential

4 Excerpts

Highly Influential

5 Excerpts

Highly Influential

10 Excerpts

Highly Influential

9 Excerpts

Highly Influential

4 Excerpts

Highly Influential

9 Excerpts

Highly Influential

6 Excerpts

Highly Influential

3 Excerpts

Highly Influential

2 Excerpts

Highly Influential

2 Excerpts

@article{Daum2009SearchbasedSP,
title={Search-based structured prediction},
author={Hal Daum{\'e} and John Langford and Daniel Marcu},
journal={Machine Learning},
year={2009},
volume={75},
pages={297-325}
}