Se p 20 09 String structures and trivialisations of a Pfaffian line bundle

  title={Se p 20 09 String structures and trivialisations of a Pfaffian line bundle},
  author={Ulrich Bunke},
  • Ulrich Bunke
  • Published 2009
The present paper is a contribution to categorial index theory. Its main result is the calculation of the Pfaffian line bundle of a certain family of real Dirac operators as an object in the category of line bundles. Furthermore, it is shown how string structures give rise to trivialisations of that Pfaffian. 

From This Paper

Topics from this paper.
2 Citations
26 References
Similar Papers


Publications citing this paper.


Publications referenced by this paper.
Showing 1-10 of 26 references

In: Mathematical aspects of string theory (San Diego

  • D. S. Freed. On determinant line bundles
  • Calif., 1986), pages 189–238, World Sci…
  • 1987
Highly Influential
4 Excerpts

A geometric description of smooth cohomology

  • U. Bunke, M. Kreck, Th. Schick
  • To appear
  • 2009

An integral Riemann-Roch theorem for surface bundles, 2009,

  • I. Madsen
  • 2009

Index theory

  • U. Bunke
  • eta forms, and Deligne cohomology. Mem. Amer…
  • 2009
2 Excerpts


  • U. Bunke, Th. Schick. Real secondary index theory. Algebr
  • Topol., 8(2):1093–1139,
  • 2008


  • K. Waldorf. More morphisms between bundle gerbes. The Categ.
  • 9, 240–273 (electronic),
  • 2007
1 Excerpt

Similar Papers

Loading similar papers…