Scheduling Multiple Sensors Using Particle Filters in Target Tracking

  title={Scheduling Multiple Sensors Using Particle Filters in Target Tracking},
  author={Amit S. Chhetri and Darryl Morrell and Antonia Papandreou-Suppappola},
A critical component of a multi-sensor system is sensor scheduling to optimize system performance under constraints (e.g. power, bandwidth, and computation). In this paper, we apply particle filter sequential Monte Carlo methods to implement multiple sensor scheduling for target tracking. Under the constraint that only one sensor can be used at each time step, we select a sequence of sensor uses to minimize the predicted mean-square error in the target state estimate; the predicted mean-square… CONTINUE READING
Highly Cited
This paper has 38 citations. REVIEW CITATIONS
27 Citations
12 References
Similar Papers


Publications citing this paper.
Showing 1-10 of 27 extracted citations


Publications referenced by this paper.
Showing 1-10 of 12 references

A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,

  • M. S. Arulampalam, S. Maskell, N. Gordon, T. Clapp
  • IEEE Trans. on Signal Processing,
  • 2002
Highly Influential
5 Excerpts

and A

  • C. Kreucher, K. Kastella
  • Hero, “A Bayesian method for integrated…
  • 2003
1 Excerpt

Covariance control for multisensor systems,

  • M. Kalandros, L. Y. Pao
  • IEEE. Trans. on Aerospace and Electronic Systems,
  • 2002
2 Excerpts

and M

  • A. Doucet, B. N. Vo, C. Andrieu
  • Davy, “Particle filtering for multi-target…
  • 2002
1 Excerpt


  • A. Doucet
  • de Freitas, and N. Gordon, Eds., Sequential Monte…
  • 2001
1 Excerpt

On sensor scheduling via information theoretic criteria,

  • A. Logothetis, A. Isaksson
  • Proceedings of the 1999 American Control…
  • 1999

Similar Papers

Loading similar papers…