# Scaling limits of the three-dimensional uniform spanning tree and associated random walk

@article{Angel2020ScalingLO, title={Scaling limits of the three-dimensional uniform spanning tree and associated random walk}, author={O. Angel and D. Croydon and S. Hernandez-Torres and Daisuke Shiraishi}, journal={arXiv: Probability}, year={2020} }

We show that the law of the three-dimensional uniform spanning tree (UST) is tight under rescaling in a space whose elements are measured, rooted real trees, continuously embedded into Euclidean space. We also establish that the relevant laws actually converge along a particular scaling sequence. The techniques that we use to establish these results are further applied to obtain various properties of the intrinsic metric and measure of any limiting space, including showing that the Hausdorff… Expand

#### Figures and Tables from this paper

#### 7 Citations

A macroscopic view of two discrete random models

- Mathematics
- 2020

This thesis investigates the large-scale behaviour emerging in two discrete models: the uniform spanning tree on Z3 and the chase-escape with death process. Uniform spanning trees We consider the… Expand

Logarithmic corrections to scaling in the four-dimensional uniform spanning tree

- Mathematics, Physics
- 2020

We compute the precise logarithmic corrections to mean-field scaling for various quantities describing the uniform spanning tree of the four-dimensional hypercubic lattice $\mathbb{Z}^4$. We are… Expand

Uniform spanning forest on the integer lattice with drift in one coordinate.

- Mathematics
- 2020

In this article we investigate the Uniform Spanning Forest ($\mathsf{USF}$) in the nearest-neighbour integer lattice $\mathbf{Z}^{d+1} = \mathbf{Z}\times \mathbf{Z}^d$ with an assignment of… Expand

The number of spanning clusters of the uniform spanning tree in three dimensions

- Mathematics
- 2020

Let ${\mathcal U}_{\delta}$ be the uniform spanning tree on $\delta \mathbb{Z}^{3}$. A spanning cluster of ${\mathcal U}_{\delta}$ is a connected component of the restriction of ${\mathcal… Expand

PR ] 5 J ul 2 02 1 PERCOLATION TRANSITION FOR RANDOM FORESTS IN d > 3

- 2021

The arboreal gas is the probability measure on (unrooted spanning) forests of a graph in which each forest is weighted by a factor β > 0 per edge. It arises as the q → 0 limit with p = βq of the… Expand

Logarithmic correction to resistance.

- Mathematics
- 2020

We study the trace of the incipient infinite oriented branching random walk in $\mathbb{Z}^d \times \mathbb{Z}_+$ when the dimension is $d = 6$. Under suitable moment assumptions, we show that the… Expand

Loop-Erased Random Walk as a Spin System Observable

- Mathematics, Physics
- 2020

The determination of the Hausdorff dimension of the scaling limit of loop-erased random walk is closely related to the study of the one-point function of loop-erased random walk, i.e., the… Expand

#### References

SHOWING 1-10 OF 53 REFERENCES

Subsequential scaling limits of simple random walk on the two-dimensional uniform spanning tree

- Mathematics
- 2014

The first main result of this paper is that the law of the (rescaled) two-dimensional uniform spanning tree is tight in a space whose elements are measured, rooted real trees continuously embedded… Expand

Scaling limits of loop-erased random walks and uniform spanning trees

- Mathematics, Physics
- 1999

AbstractThe uniform spanning tree (UST) and the loop-erased random walk (LERW) are strongly related probabilistic processes. We consider the limits of these models on a fine grid in the plane, as the… Expand

Scaling limits for simple random walks on random ordered graph trees

- Mathematics
- Advances in Applied Probability
- 2010

Consider a family of random ordered graph trees (T n ) n≥1, where T n has n vertices. It has previously been established that if the associated search-depth processes converge to the normalised… Expand

Conformal invariance of planar loop-erased random walks and uniform spanning trees

- Mathematics, Physics
- 2001

This paper proves that the scaling limit of a loop-erased random walk in a simply connected domain \(D\mathop \subset \limits_ \ne \mathbb{C} \) is equal to the radial SLE2 path. In particular, the… Expand

Rayleigh processes, real trees, and root growth with re-grafting

- Mathematics
- 2004

The real trees form a class of metric spaces that extends the class of trees with edge lengths by allowing behavior such as infinite total edge length and vertices with infinite branching degree.… Expand

Spectral Dimension and Random Walks on the Two Dimensional Uniform Spanning Tree

- Mathematics
- 2009

We study the simple random walk on the uniform spanning tree on $${\mathbb {Z}^2}$$ . We obtain estimates for the transition probabilities of the random walk, the distance of the walk from its… Expand

Convergence of three-dimensional loop-erased random walk in the natural parametrization.

- Mathematics
- 2018

In this work, we consider loop-erased random walk (LERW) and its scaling limit in three dimensions, and prove that 3D LERW parametrized by renormalized length converges to its scaling limit… Expand

Convergence in distribution of random metric measure spaces (Λ-coalescent measure trees)

- Mathematics
- 2009

We consider the space of complete and separable metric spaces which are equipped with a probability measure. A notion of convergence is given based on the philosophy that a sequence of metric measure… Expand

On Brownian motion, simple paths, and loops

- Mathematics
- 2015

We provide a decomposition of the trace of the Brownian motion into a simple path and an independent Brownian soup of loops that intersect the simple path. More precisely, we prove that any… Expand

Volume growth and heat kernel estimates for the continuum random tree

- Mathematics
- 2006

In this article, we prove global and local (point-wise) volume and heat kernel bounds for the continuum random tree. We demonstrate that there are almost–surely logarithmic global fluctuations and… Expand