Scale and move transformation-based fuzzy interpolative reasoning: a revisit

  title={Scale and move transformation-based fuzzy interpolative reasoning: a revisit},
  author={Zhiheng Huang and Qiang Shen},
  journal={2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542)},
  pages={623-628 vol.2}
This paper generalises the previously proposed interpolative reasoning method to cover the interpolations involving the complex polygon, Gaussian or other bell-shaped fuzzy membership functions. This can be achieved by the generality of the proposed scale and move transformations. The method works by first constructing a new inference rule via manipulating the two given adjacent rules, and then by using scale and move transformations to convert the intermediate inference results into the final… CONTINUE READING

From This Paper

Figures, tables, and topics from this paper.
5 Citations
8 References
Similar Papers


Publications citing this paper.
Showing 1-5 of 5 extracted citations


Publications referenced by this paper.
Showing 1-8 of 8 references

K6czy, “A new method far avoiding abnormal conclusion far a-cut based rule interpolation,

  • P. Baranyi. D. Ti, L.T.Y. Yam
  • in Pmc. FUZZ-IEEE’OY. pp
  • 1999
1 Excerpt

An improvement to K k z y and Himta ’ s interpolative reasoning in sparse fuzzy rule bases

  • R. Setnes.M..Babuska, U. Kaymak, H. R. N. Lemke
  • 1998


  • R. Setnes.M..Babuska, U. Kaymak, Lemke
  • R. N., "Similarity measures in fuvy rule base…
  • 1998

A general interpolation technique in f- rule bases with arbitrary membership functions:’ in Pmc

  • P. Baranyi, T. D. Gedean, L. T. Kkzy
  • IEEE Int. Conf Svst.. Man. Cybern., pp. 510-515.
  • 1996
1 Excerpt

A new fuay interpolative reasoning method based on centre of graviry , ” hoc

  • T. D. Gedean Baranyi, L. T. Kkzy, Bouchon-Meunier. C. Marsala, M. Rifqi, W. H. Hsiaa. S. M. Chen
  • Inremot . J Appmx . Reasoning
  • 1993

“ S u e reduction by interpolation in fuuy mle bases : ’ EEE Trans

  • M. Mimmota W. Z. Qiao, S. Y. Yan
  • 1977

‘ Fuzzy Basis functions . mivenal approximation . and olthogonal least - squares leaming

  • M. Mirumoto S. Yan, W. Z. Qiao
  • IEEE Transactions oi ’ Neurol Nehvorkr

Similar Papers

Loading similar papers…